
DISSERTATION

Automated Model-driven Generation of the Structure of
WIMP User Interfaces Based on High-level Models

Submitted at the Faculty of Electrical Engineering, Vienna University of Technology in
partial fulfillment of the requirements for the degree of Doctor of Technical Sciences

under supervision of

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
Institute number: 384

Institute of Computer Technology
Vienna University of Technology

and

Oscar Pastor, Full Professor
Research Center on Software Production Methods

Universitat Politécnica de Valencia
Spain

and

Proj.-Ass. Dipl.-Ing. Dr.techn. Jürgen Falb
Institute number: 384

Institute of Computer Technology
Vienna University of Technology

as participating assistant

by

Sevan Kavaldjian
Matr.Nr. 9848110

Böckhgasse 9/72, 1120 Wien

Vienna, May 2011

Kurzfassung

Das Erstellen von grafischen Benutzungsschnittstellen ist immer noch eine zeit- und kostenin-
tensive Aufgabe. Nichtsdestotrotz erlauben aktuelle Forschungsansätze diese aus Interaktions-
modellen zu generieren. Diese Dissertation präsentiert einen automatisierten Ansatz zur mod-
ellgetriebenen Generierung der Struktur von graphischen Benutzungsschnittstellen, WIMPs aus
Interaktionsmodellen. Die benutzten Interaktionsmodelle sind Diskursmodelle, die genau genom-
men eine Klasse von Dialogen darstellen. Diese Modelle basieren auf Theorien der menschlichen
Kommunikation und sollten daher für Menschen leichter verständlich sein als Quellcode, der
Benutzungsschnittstellen implementiert. Solche Diskursmodelle zusammen mit entsprechenden
Transformationsregeln besitzen genügend Sematik, um Benutzungsschnittstellen automatisch für
eine Vielzahl von Endgeräten zu generieren.

Diese Dissertation präsentiert einen zweistufigen Transformationsprozess mit einem Zwischenmod-
ell für die Struktur von Benutzungsschnittstellen. Sie konzentriert sich auf den ersten Schritt,
die Transformation von Diskursmodellen zu Strukturmodellen von Benutzerschnittstellen mit
Hilfe von deklarativen Transformationsregeln. Im Speziellen werden Transformationsregeln für
Desktop-Benutzungsoberflächen, Touchscreens, die mit dem Finger zu bedienen sind, sowie Trans-
formationsregeln für unterschiedliche Bildschirmgrößen dargestellt. Zusätzlich wird ein Ansatz zur
Prototypengenerierung von grafischen Benutzungsschnittstellen, ausgehend von Anforderungsspe-
zifikationen mit Hilfe von prozeduralen Tranformationen, vorgestellt. Es werden Transformatio-
nen, ausgehend von der Anforderungsspezifikation über die Benutzungsschnittstellenspezifikation
bis hin zum grafischen Benutzungsschnittstellenprototypen gezeigt und umgekehrt. Darüberhin-
aus wird ein Ansatz zur automatischen Generierung von inversen prozeduralen Transformation-
sregeln vorgestellt. Des Weiteren sind in dieser Dissertation die zur Transformation benutzten
deklarativ dargestellte Regeln zum Vergleich ebenfalls in der prozeduralen Sprache implemen-
tiert und die Unterschiede näher erläutert. Eine Feasibility-Studie wird vorgestellt, welche die
Anwendbarkeit des auf Diskursen basierenden Ansatzes für die Generierung von vorgegebenen
Touchscreen-Benutzungsschnittstellen, die mit dem Finger zu bedienen sind, für Einkaufswagen-
roboter zeigt. Es werden die dabei bewältigten Problemstellungen während der Generierung der
Benutzungsschnittstelle gezeigt, sowie die daraus gewonnenen Erkenntnisse. Abschliessend wird
die vorliegende Arbeit anderen Arbeiten gegenübergestellt.

II

Abstract

User-interface design is still a time consuming and expensive task to do, but recent advances allow
generating them from interaction design models. This doctoral dissertation presents an automated
model-driven approach for generating the structure of WIMPs (Window, Icon, Menu, Pointing
device) out of interaction design models like Discourse Models, more precisely models of classes
of dialogues. They are based on theories of human communication and should, therefore, be more
understandable to humans than source code implementing user interfaces. Such Discourse Models
together with transformation rules contain enough semantics to generate WIMP UIs automati-
cally for multiple devices.

This doctoral dissertation presents a two-step transformation approach with an intermediate UI
model. It concentrates on a major part of the first step, transforming Discourse Models to Struc-
tural UI Models using declarative transformation rules. In particular, transformations for desktop
UIs and finger-based touchscreen UIs as well as for different screen sizes are presented. Addi-
tionally, an approach for GUI prototype generation based on requirements specifications with
procedural transformation rules is introduced. It presents transformations from requirements
specification via UI specification to UI prototypes and vice versa as well as an approach to au-
tomatically derive inverse procedural transformation rules. Furthermore, this work compares
declaratively represented rules used for transformation, which have been implemented in a pro-
cedural language as well, for comparison with each other, and explains the respective differences.
A feasibility study is presented to show the applicability of the discourse-based approach for the
generation of the GUI for a given finger-based touchscreen GUI design of a robot trolley. It ex-
plains the challenges tackled during the touchscreen GUI generation and the lessons learned in
the course of the application. Finally this work is put into context with related work.

III

Acknowledgements

First of all, I would like to thank Professor Hermann Kaindl, my supervisor, who has been a
great support while writing my thesis and has always provided me with valuable pieces of advise
and hints especially when I seemed to lose track. He has always been patient and helpful when I
needed support or further ideas to improve my doctoral dissertation. He was a great supervisor
especially when I had to deal with complex questions and problems as he supported me with his
profound and highly sophisticated knowledge of Software Engineering. I have to thank him very
much for motivating me and encourage me in writing this thesis.

I also have to thank my second supervisor, Professor Oscar Pastor, who enabled me to put down
my own ideas and inspired me with fruitful discussions.

Furthermore I would like to thank Dr. Jürgen Falb, who always had an open ear, most valuable
comments and was a great support when it comes to answer difficult questions throughout the
whole thesis writing process. The same applies to Dr. Chistian Bogdan, who was especially sup-
portive when drafting the concept of this thesis especially regarding the topic Human-Computer
Interaction.

I also have to thank our research team of the Department of Computer Technology, Dr. Edin
Arnautović, Dominik Ertl, Roman Popp, David Raneburger and Alexander Szép who have been
most supportive when developing the concept of this thesis.

Finally I would like to thank my parents, Edna and Haik, who have always supported me and
motivated me not to give up and looked after me especially in times when writing this thesis was
not so easy. They have taught me that fairly everything is possible if only you stay motivated
and not lose the aim out of sight. Last but not least I would like to thank my carrying girlfriend
Nadja for having so much patience and giving me the energy to keep on working on my doctoral
dissertation.

Vienna, May 2011 Sevan Kavaldjian

IV

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem . 2
1.3 Thesis Statement . 2
1.4 Thesis Structure . 3

2 Background on Model Driven Software Development 5
2.1 Model Driven Software Development in General . 5
2.2 Model-to-Model Transformation Approaches . 6
2.3 Model-Driven User Interface Development . 8

2.3.1 Model-Driven GUI Structure and Behavior Generation 8
2.3.2 Model-Driven Fully- vs. Semi-Automatic UI Generation 10

3 Automated Discourse-based WIMP UI Structure Generation 12
3.1 The Transformation Approach . 12
3.2 Transformation Input - Discourse Model . 13
3.3 Transformation Output - Structural UI Model . 16
3.4 The Discourse to Structural UI Model Transformation Process 17
3.5 Transformation Rules . 19

3.5.1 General Purpose GUI Transformation Rules 19
3.5.2 Content Transformation Rules Specific to Intentions 23
3.5.3 Finger-based Touchscreen Specific Transformation Rules 29
3.5.4 Transformation Rules for Different Screen Sizes 35

3.6 Model-to-Code Transformation . 39

4 Requirements-based GUI Prototype Generation with Procedural Rules 42
4.1 The RSL Metamodel . 42
4.2 Transformations from Requirements Specifications via UI Specifications to UI Pro-

totypes . 45
4.3 Transformations from UI Prototypes via UI Specifications to Requirements Speci-

fications . 51
4.4 Deriving Inverse Transformation Rules Automatically 51

V

5 Comparison between a Declarative and a Procedural Transformation Language 54
5.1 MOLA vs. DTL . 54

5.1.1 General Transformation Rule Comparison 56
5.1.2 Concrete Rule Example Comparison . 60
5.1.3 Personal Experience with DTL and MOLA 61

5.2 Differences between MOLA and DTL . 61
5.3 Comparison Summary . 62

6 Feasibility Study CommRob: GUI Generation for a Given Finger-based Touch-
screen GUI Design 65
6.1 The CommRob Discourse Models and the Corresponding GUI 65
6.2 The CommRob GUI Generation Challenge . 69

6.2.1 Adapting Layout According to a Given Design 74
6.2.2 Presenting Content According to a Given Design 76
6.2.3 Customising Style According to a Given Design 76

6.3 Lessons Learned . 76

7 Related Work 81
7.1 User interface Generation with the OlivaNova Model Execution System 81
7.2 Generation of UIs based on Task Models . 82
7.3 UsiXML-based MDA-compliant Environment for Developing UIs 85
7.4 Other Related Approaches . 86

8 Conclusion and Future Work 90
8.1 Conclusion . 90
8.2 Future Work . 91

Literature 93

VI

List of Figures

1.1 Problem Overview . 2

2.1 MDA Process (redrawn from [Van05]) . 5
2.2 Model-to-model transformation concept (redrawn from [CH06]) 6
2.3 The Cameleon Reference Framework (copied from [Van08]) 9
2.4 UI generation with separated structure and behavior model 10
2.5 UI generation process with combined structure and behavior model 10
2.6 Semi-automatic UI generation process . 11

3.1 The Basic Transformation Process . 12
3.2 Conceptual discourse metamodel . 13
3.3 Selection of Communicative Act taxonomy . 14
3.4 Selection of Discourse Relation taxonomy . 15
3.5 Part of conceptual metamodel of Structural UI Models 16
3.6 The model-to-model transformation step . 17
3.7 The Discourse Model to Structural UI Model transformation process 18
3.8 Subtree of an online shop discourse . 19
3.9 Resulting Structural UI Model . 20
3.10 Concrete UI (Screenshot) . 20
3.11 Background Rule. 21
3.12 Title Rule . 23
3.13 Annotation Rule . 24
3.14 Excerpts of an online shop Discourse Model . 24
3.15 Small excerpt of a domain of discourse model . 25
3.16 Transformation rules for closed question-answer (a) and informing (b), rules for

transforming output widgets depending on data types (string (c) and double (d)),
and for transformations based on heuristics (pictures (e) and attribute names (f)) 26

3.17 Structural UI Models corresponding to the online shop Discourse Model excerpts
in Figure 3.14 . 27

3.18 Screenshot of the Final UI representing the ClosedQuestion 28
3.19 Screenshot of the Final UI representing the Informing on all products 29
3.20 Discourse Model excerpt . 30
3.21 Physical and application-tailored device specifications 31
3.22 Structural UI Model excerpt automatically generated for touchscreen 32
3.23 Final finger-based touchscreen user interface . 33
3.24 Excerpt of final desktop user interface . 34

VII

3.25 A Discourse Model excerpt . 35
3.26 Generated UI for 640×480 . 36
3.27 The Extended Transformation Process [RPK+11b] 37
3.28 Generated UI for 480×320 . 38
3.29 Generated UI for 320×180 . 39

4.1 Part of the RSL Metamodel linking RE and UI Specifications [KSS+07] 43
4.2 Part of the RSL Metamodel showing UIElements [KSS+07] 44
4.3 A selection of elements of the GUI Profile provided by RSL [KSS+07] 45
4.4 Overview of specifications and their transformations. 47
4.5 MOLA Rule R1 for T1. 48
4.6 MOLA Rule R7 for T2. 49
4.7 MOLA Rule R1’ for T1’. 50
4.8 Excerpt of the MOLA Metamodel. 51
4.9 Metarule R1 in MOLA. 52

5.1 Background Rule specified in MOLA . 57
5.2 Background Rule specified in DTL . 57
5.3 Adjacency Pair Rule specified in MOLA . 58
5.4 Adjacency Pair Rule specified in DTL . 58
5.5 Offer-Accept Rule specified in MOLA . 59
5.6 Offer-Accept Rule specified in DTL . 59

6.1 CommRob Start Screen . 66
6.2 Shopping Discourse Root . 67
6.3 Shopping Discourse – Robot is NOT MOVING branch 68
6.4 CommRob screen with customized layout . 70
6.5 Shopping Discourse – Robot is MOVING branch 71
6.6 Shopping Discourse – Inserted Sequence Manage Shopping List 72
6.7 Shopping Discourse – Inserted Sequence Link To Other Robot 73
6.8 CommRob Shopping Discourse Extract . 75
6.9 CommRob Layout Rendering Rule . 75
6.10 CommRob screen with fully automatic layout . 77
6.11 CommRob Content-Rendering Rule for ShoppingList 78
6.12 CommRob ShoppingList . 78

7.1 The software generation process of the OO-Method (copied from [PEPA08]) 82
7.2 OOMethod derivation (copied from [PEPA08]) . 83
7.3 One model many interfaces approach based on task models (copied from [MPS04]) 83
7.4 UsiXML based UI generation approach and supporting tools (copied from [Van05]) 86

VIII

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

ARES Automatic Round trip Engineering System

ATL ATLAS Transformation Language

AUI Abstract User Interface

CIM Computing Independent Model

CSS Cascading Style Sheets

CTT Concurrent TaskTrees

CUI Concrete User Interface

DPI Dots Per Inch

DTL Discourse Transformation Language

EMF Eclipse Modeling Framework

FUI Final User Interface

GUI Graphical User Interface

HCI Human Computer Interaction

JET Java Emitter Templates

KBS Knowledge-based System

LHS Left Hand Side

MDA Model Driven Architecture

MDD Model Driven Development

MDSD Model Driven Software Development

MDUID Model-Driven User Interface Development

MOF Meta Object Facility

MOLA MOdel transformation LAnguage

OCL Object Constraints Language

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

IX

RHS Right Hand Side

RSL Requirements Specification Language

RST Rhetorical Structure Theory

UI User Interface

UIDL User Interface Description Language

UML Unified Modeling Language

UsiXML USer Interface XML

WIMP Window Icon Menu Pointer

XML eXtensible Markup Language

XUL XML User Interface Language

X

1 Introduction

This introduction explains the motivation behind this work and the research problem tackled. In
particular, it presents the research hypotheses this work is based upon. Furthermore, it provides
an overview of this doctoral dissertation and briefly explains the content of each chapter.

1.1 Motivation

Every device needs a device-specific UI (user interface). In particular manual creation of GUIs
(graphical user interfaces) is error prone. As a consequence, recently developed approaches for
GUI development try to maximize reuse and reduce coding errors by automatically generating the
user interfaces for different devices (e.g., PDA, PC, mobile phone) based on the same high-level
model. This model, which is platform independent, is a key element of Model Driven Development
(MDD), called Platform Independent Model (PIM) and allows modeling the interaction without
having a concrete device in mind.

The driving force for research activities in the area of automatic generation of user interfaces is the
ability to develop UIs more cost efficiently and faster than manually developed UIs. By allowing
domain experts to model the interactions and having the UI generated automatically for several
target devices, the development costs may be reduced. The code generation avoids human coding
errors and may, therefore, result in improved software quality as well. Modeling the interaction
between a human and a computer is intuitive for end users [BKFP08]. This motivates us to use
a discourse-based approach as a starting point for UI generation.

Instead of generating UIs from simple abstractions, an interaction designer (or even an end user)
has the opportunity to model discourses in the sense of dialogues (supported by a tool). From
such a high-level Discourse Model1, the goal is to automatically generate the overall structure and
the “look” of a GUI, more precisely a WIMP (window, icon, menu, pointer) user interface. This
automatic generation employs model transformations.

1Discourse Models for general human-machine and machine-machine communication have been developed in
a team effort in the course of the FIT-IT OntoUCP project (No. 809254/9312, www.ontoucp.org) [FKH+06,
BFK+08, BKFP08, PFA+09].

1

Introduction

1.2 Research Problem

The research problem which this thesis addresses is how to get automatically from a specific
interaction design model to a concrete user interface. In this approach, an interaction design is
represented as a Discourse Model. The main idea is to apply a model-driven approach to transform
a Discourse Model to a Structural UI Model which models the UI structure independently of any
UI toolkit. This approach allows inheriting all the advantages of MDD to the generation of user
interfaces. Figure 1.1 illustrates the problem overview.

Discourse Model Structural UI Model Transformation rules ?

Figure 1.1: Problem Overview

The transformation rules which transform a Discourse Model to a Structural UI Model, illustrated
in Figure 1.1 with an arrow, have to be identified. Applying them to a Discourse Model creates
the Structural UI Model, which is the starting point for the generation of the WIMP-UI screens
in a particular target language. The WIMP-UI code generation from the Structural UI Model,
which is out of scope of this doctoral dissertation, is described for Java Swing in the master thesis
[Ran08]. The WIMP-UI behavior is also generated from the Discourse Model and is not part of
this doctoral dissertation.

Developing the UI for the same application for a new device manually, carries a lot of options
for human errors. The approach presented in Chapter 3 of this doctoral dissertation allows the
process of switching to a new device to be automated. Ideally, only the device specification for
the new device has to be created and the generation process has to be executed.

1.3 Thesis Statement

This research is based on the following hypotheses, presented in [Kav07]:

High-level models and transformation rules capture all necessary information for
WIMP-UI screen generation: We conjecture that high-level models and transformation rules
provide all necessary information to generate the WIMP-UI screens. The needed high-level models
are the Discourse Model and the Domain-of-Discourse Model. The Domain-of-Discourse Model
defines the objects which the Discourse Model talks about. The transformation rules define
mappings between the Discourse Model and the Structural UI Model. The Structural UI Model
is the input for the WIMP-UI screen code generation.

Transformation rules support the generation of the structure of WIMP-UIs for mul-
tiple devices: Starting the UI development with the specification of the Discourse Model, this
approach allows the generation of the structure of WIMP-UI for multiple devices automatically.
The transformation process for transforming a Discourse Model to a Structural UI Model uses
the device specification to select the appropriate transformation rules and, therefore, is able to
achieve WIMP-UIs screens tailored for each device. The generation process uses an optimization

2

Introduction

loop to achieve maximum use of the available space for the given resolution, minimum amount of
navigation clicks, and minimum scrolling.

Specific transformation rules support the generation of UIs for different pointing
granularities: UIs developed for pen-based touchscreens and mouse-based GUIs have to be
designed differently compared to UIs used for finger-based touchscreens. For the different pointing
granularity of a finger compared to a pen or mouse, the suitable input widget has to be selected.
Therefore, this approach offers different transformation rules to support fine pointing granularity
(pen-based touchscreen and mouse-based GUI) as well as coarse pointing granularity (finger-
based touchscreen). According to the pointing granularity defined in the device specification, the
appropriate transformation rules are selected for the Structural UI Model generation.

Transformation rules support the presentation of content according to purpose: The
main ingredients of Discourse Models are Communicative Acts. They express the purpose of the
communication. Each Communicative Act can be related to an object of the Domain-of-Discourse
Model, which represents the content. During the UI generation process, the Communicative Act
type (purpose) is used to present objects of the Domain of Discourse according to purpose. De-
pending on the Communicative Act type, the same content may be presented differently (according
to purpose) to the user.

1.4 Thesis Structure

The remainder of this doctoral dissertation is organized in the following manner:

Chapter 2 provides some background on the field of model driven software development. It
presents the model-to-model transformation concept. It also explains different existing model-to-
model transformation approaches. Furthermore, it gives an insight in model driven user interface
development.

Chapter 3 represents the core of this work and explains the model-driven WIMP-UI generation
approach based on Discourse Models. The transformations from a Discourse Model to a Structural
UI Model are illustrated for different platforms with examples. In particular, this chapter presents
transformation rules for fine pointing granularity (e.g., mouse-based desktop UIs) and coarse
pointing granularity (e.g., finger-based touchscreen UIs) as well as for different screen sizes.

Chapter 4 shows the generation of UIs starting with requirements specifications with a trans-
formation language based on procedural rules. It presents transformations from requirements
specifications via UI specifications to UI prototypes and vice versa. Furthermore, it explains an
approach to automatically derive inverse transformations.

Chapter 5 compares a declarative and a procedural transformation language with each other.
Specifically, it compares the transformation rules of both languages. It presents the advantages
of each transformation language and gives a comparison summary.

Chapter 6 shows the feasibility study CommRob. It describes how we deploy the discourse-
based UI generation approach to fully-automatically generate the GUI for a given finger-based
touchscreen GUI design of a robot trolley. It explains the challenges tackled during the touchscreen
GUI generation and presents the lessons learned during the deployment.

3

Introduction

Chapter 7 puts this work into context of related research. In particular, it explains the UI gener-
ation approach with the OlivaNova model execution system, the UsiXML-based MDA-Compliant
Environment for Developing UIs, and the generation of UIs based on Task Models.

Chapter 8 concludes and presents some ideas for future work.

4

2 Background on Model Driven Software
Development

This chapter provides background information on the field of model driven software development.
It presents the model-to-model transformation concept. In particular, it explains different existing
model-to-model transformation approaches. Furthermore, it gives an overview in model driven
development of user interfaces.

2.1 Model Driven Software Development in General

Model Driven Software Development (MDSD) [SV06] is based on the use of models. Models
can be seen as (software) abstractions that give developers the possibility to effectively address
concerns. The Model Driven Architecture (MDA) [MM03, MSUW04] is an example of a model
driven approach. It defines a process composed of three different kinds of models:

Computing Independent Model (CIM): This model represents the requirements from a
computation-independent viewpoint. It does not show any detail about the structure of the
software system. The requirements of a system are modeled in a CIM. It plays a significant role
in bridging the gap between domain experts on the one hand and software engineers on the other.

Platform Independent Model (PIM): This model is independent of the specific technological
platform used to implement software.

Platform Specific Model (PSM): This model is independent of the implementation language.
However, it already contains details for one particular platform.

Figure 2.1 illustrates the MDA process. The key idea is to start software development with the
specification of higher-level models and to generate lower-level models and eventually code out of
them. The arrows in Figure 2.1 represent model transformations that transform a more abstract
model to a more concrete one (e.g., PIM to PSM).

Computation
Independent
Model(CIM)

Platform
Independent
Model(PIM)

Platform
Specific

Model(PSM)
Source Code

M2M
Transformation

M2C
Transformation

M2M
Transformation

Figure 2.1: MDA Process (redrawn from [Van05])

5

Background on Model Driven Software Development

Model transformations play a key role in MDSD. Figure 2.2 illustrates the basic concept of model-
to-model transformations. It shows an example with one source model and one target model. Each
source and target model conforms to a metamodel. A metamodel represents the abstract syntax
of a model. Transformation rules are defined by mapping source metamodel elements to target
metamodel elements. The transformation rules are executed by the transformation engine. The
source model is read by the transformation engine and the corresponding target model is created.
In some cases the source and target metamodels can be the same.

Source Model Target Model

Source Metamodel Transformation Definition Target Metamodel

Transformation
Engine

Refers to Refers to

Reads

Conforms to Conforms to

Writes

Refers to

Figure 2.2: Model-to-model transformation concept (redrawn from [CH06])

2.2 Model-to-Model Transformation Approaches

There are several different model-to-model transformation approaches in the literature [CH06]:

• The direct manipulation approach

• The structure-driven approach

• The operational approach

• The template-based approach

• The relational approach

• The graph-transformation-based approach

• The hybrid approach

In the following, each of the approaches is explained according to [CH06]:

Direct manipulation approach: This approach is implemented as an object-oriented frame-
work which can offer some minimal infrastructure to organize the transformations. It provides
an internal model representation and some APIs to modify it. Many facilities like transformation
rules, scheduling, tracing have to be implemented from scratch, in a programming language like
Java.

Structure-driven approach: The characteristic of this approach are two distinct phases during
the transformation. The first phase is responsible for creating the hierarchical structure of the
target model. The second phase takes care of setting the attributes and references in the target.
The framework is in charge of the scheduling and application strategy. Developers have only to
write the transformation rules. The transformation language used in Chapter 3 belongs to this
category.

6

Background on Model Driven Software Development

Operational approach: This category of approaches is quite similar to direct manipulation but
provides more dedicated support for model transformation. In this approach, facilities to express
computations are used to extend the utilized metamodeling formalism. A typical example would
be to extend a query language like the Object Constraints Language (OCL) with imperative
constructs. An object-oriented programming system is composed by combining the Meta Object
Facility (MOF) with such an extended executable OCL. Systems in this category are, e.g., QVT
operational mappings and Kermeta.

Template-based approach: This approach uses model templates which are models with inserted
metacode that calculates the variable parts of the resulting template instances. The developer
has to anticipate the result of the template instantiation with the help of the model templates,
which are expressed in the concrete syntax of the target language. The form of the metacode
can be annotations on model elements. All annotations are part of the metalanguage and can
particularly be conditions, iterations, and expressions. In most cases the used expression language
in the metalanguage is OCL.

Relational approach: This approach is declarative and can be characterized by the main con-
cept of mathematical relations. They can be interpreted as a form of constraint solving. The key
principle is to use constraints to specify the relations between source and target element types.
Originally such specifications are not executable. In contrast this approaches can, comparable to
logic programming, give declarative constraints executable semantics. In relational approaches,
predicates are used to describe the relations. Therefore, it is often implemented in logic program-
ming with its unification-based matching, search, and backtracking. In rational approaches target
elements are created implicitly, whereas in imperative direct manipulation approaches explicitly.
Relational approaches are side-effect-free, support multidirectional rules and even sometimes pro-
vide backtracking. They require the separation among source and target models and thus do not
offer the possibility for in-place update. Systems in this category are, e.g., QVT Relations and
Kent Model Transformation Language.

Graph-transformation-based approach: The graph-transformation-based approach is based
on the theoretical work on graph transformations. It operates on typed, attributed, labeled graphs
which can be seen as formal representations of simplified class models. Each graph transformation
rule is composed of a Left Hand Side (LHS) and Right Hand Side (RHS) graph pattern. The LHS
pattern is matched in the source model, whereas the RHS pattern is created in the target model. In
many cases, LHS patterns additionally contain conditions. Additional logic is needed to calculate
target attribute values like element names. Developers have the choice to transform graph patterns
in the concrete syntax of their source or target language or in the MOF abstract syntax. The
concrete syntax has the advantage to be more familiar to developers used to work with a modeling
language compared to the abstract syntax. However, the abstract syntax can be used to allow a
default transformation that will work for each metamodel. This can be useful when no specific
concrete syntax is available. Systems in this category are, e.g., MOLA and Fujaba. MOLA is
used in Chapter 4 as the transformation language.

Hybrid approach: This approach uses different techniques from the other model-to-model ap-
proach categories. They can be combined in different ways. Either they can be combined as
separate components or at the level of individual rules. A declarative rule has an LHS (source
pattern) composed of a set of syntactically typed variables, which have an optional OCL constraint
as a filter and an RHS (target pattern) composed of a set of variables and a declarative logic to
assign values to the attributes of the target elements. A hybrid rule has a block of imperative logic
as a complement to the source or target patterns, which is executed after the target pattern has

7

Background on Model Driven Software Development

been created. However, an imperative rule is composed of a name, an imperative block, and a set
of formal parameters, though no patterns are declared. An example of a hybrid approach is QVT,
which has three separate components, Relations, Operational mappings and Core. Combinations
on the rule level, for example, are ATL and YATL.

2.3 Model-Driven User Interface Development

Model-Driven User Interface Development (MDUID) is a quite new field of research that combines
techniques from model driven software development with Human Computer Interaction (HCI)
concepts. The Cameleon Reference Framework [Van05, CCT+03] defines the UI development on
four different levels, illustrated in Figure 2.3. An example of a model located on each of the four
levels is shown.

The Task and Domain Model is the most abstract model which corresponds to the CIM in the
MDA Process. It can be notated e.g., in the Concur Task Tree (CTT) notation. It is illustrated in
Figure 2.3 in the blue area. It describes tasks of the user (e.g., create brand) and their temporal
relationship.

The Abstract UI Model which is more concrete corresponds to the PIM. It describes the UI
independently of any interaction modality and platform. It contains abstract containers and
abstract interaction components. In Figure 2.3 the yellow area shows an Abstract UI Model. It
describes the UI elements in an abstract way (e.g., element for creating a brand).

The Concrete UI Model corresponds to the PSM. It describes the UI for a particular interaction
modality (e.g., GUI) but is still independent of the UI-toolkit. Each platform (e.g., smartphone,
desktop PC) has its specific Concrete UI Model. This model already contains the widgets that
are supported by the particular platform. An example of a Concrete UI Model is illustrated in
Figure 2.3 in the orange area, which shows the widget structure of the GUI, which is composed
of four textboxes, each having a label next to it, and a button below them.

The Final UI Model corresponds to the code in the MDA Process. It represents the UI code that
is created based on the previous levels. It is illustrated in Figure 2.3 in the pink area. It shows
the final resulting GUI screen.

If we add model transformations to get from one model of the Cameleon Reference Framework to
another, it can be interpreted as the MDA Process tailored to User Interfaces development.

The most important existing approaches for model driven user interface development are explained
in Chapter 7 in the context of the related work.

2.3.1 Model-Driven GUI Structure and Behavior Generation

Every GUI has a structure and a behavior. Therefore, approaches for model-driven development
of GUIs have to generate the structure as well as the behavior on some level of abstraction starting
from the task and domain level model. Two different approaches are possible with each of them
having pros and cons. The first one illustrated in Figure 2.4 generates separate models for the
GUI structure and behavior starting from the task and domain level model. From both generated
models the Final UI is generated in a second step. The approach presented in Chapter 3 of this
doctoral dissertation is based on this model-driven GUI generation process. However this doctoral

8

Background on Model Driven Software Development

Figure 1 outlines the MDE-compliant approach for developing
UIs decomposed into four major steps that result from the
Cameleon Reference Framework [4,40]:

1. Task and domain modelling (corresponding to the Com-
putting-Independent Model –CIM– in MDE): where a
model is provided for the end user’s task, the domain of ac-
tivity and, if needed, the context of use (user, platform, and
environment). This step is supported by IdealXML [34].
Fig. 2a graphically depicts a task model expressed accord-
ing to CTT notation [31]. This task model has been ex-
tended with new task types, attributes, and relationships.

2. Abstract User Interface (corresponding to the Platform-
Independent Model –PIM– in MDE): this level describes
potential user interfaces independently of any interaction
modality and any implementation technology. It defines ab-
stract containers and individual components, two forms of
Abstract Interaction Objects by grouping subtasks accord-
ing to various criteria, a navigation scheme between the
container and selects abstract individual component for
each concept so that they are independent of any modality.
An AUI abstracts a CUI into a UI definition that is inde-
pendent of any modality of interaction (e.g., graphical in-
teraction, vocal interaction, speech synthesis and recogni-
tion, video-based interaction, virtual, augmented or mixed
reality). An AUI can also be considered as a canonical ex-
pression of the rendering of the domain concepts and tasks
in a way that is independent from any modality of interac-
tion. An AUI is considered as an abstraction of a CUI with
respect to interaction modality. At this level, the UI mainly
consists of input/output definitions, along with actions that
need to be performed on this information. This step is also
supported by IdealXML [34]. Fig. 2b graphically repro-
duces a AUI.

3. Concrete User Interface (corresponding to the Platform-
Specific Model –PSM– in MDE): this level describes a po-
tential user interface after a particular interaction modality
has been selected (e.g., graphical, vocal, multimodal). This
step is supported by several tools helping designers and de-
velopers to edit, build, or sketch a user interface. For in-
stance, SketchiXML [6,7] (figure 3), GrafiXML [24], For-
miXML, ComposiXML [18], PlastiXML [5] and VisiXML
for graphical user interfaces. It concretizes an abstract UI
for a given context of use into Concrete Interaction Objects
(CIOs) so as to define widgets layout and interface naviga-
tion. It abstracts a final UI into a UI definition that is inde-
pendent of any computing platform. Although a CUI makes
explicit the final Look & Feel of a final UI, it is still a
mock-up that runs only within a particular environment. A
CUI can also be considered as a reification of an AUI at the
upper level and an abstraction of the final UI with respect
to the platform. Fig. 2c reproduces a CUI for a graphical
target environment. Each tool pursues a particular goal.
Some of them will be exemplified into more details later on
in this paper.

4. Final User Interface (corresponding to the code level in
MDE): this level is reached when the code of a user inter-
face is produced from the previous levels. This code could
be either interpreted or compiled. We hereby define a ren-
dering engine as a software component (or set of compo-
nents) that are able to interpret a UsiXML file expressed at
the CUI level and to run it or a code compiler that (semi-
automatically generate code from a UsiXML file expressed
at the CUI level. Another level could be imagined as well,
but does not present any particular interest. Fig. 2d deter-
mines a final UI corresponding to the CUI given in Fig. 2c.

Task & domain

AUI level

CUI level

FUI level

Task & domain

AUI level

CUI level

FUI level

Figure 2. The four levels: (a) task and domain, (b) abstract

UI, (c) concrete UI, and (d) final UI.

Figure 3. SketchiXML, a tool for sketching a user interface.

3. MODELS
Before examining closely what are the challenges regarding the
‘models’ dimension, let us detail more the models of concern in
UsiXML. UsiXML is a collection of models for specifying a
UI, some of them being used to support a particular level, some
other being used to support a transition from one level to an-
other:

Figure 2.3: The Cameleon Reference Framework (copied from [Van08])

9

Background on Model Driven Software Development

dissertation focuses only on the generation of the GUI structure, which is based on the model-
to-model transformations from the task and domain level model to the model capturing the UI
structure illustrated with the arrow in the top left of Figure 2.4. The GUI behavior generation is
out of scope of this dissertation. The process of combining the GUI behavior and structure model
to the Final UI is explained in [RPK+11a].

Task & domain level
model

Model capturing the UI
structure

Final UI

M2M
Transformation

M2M
Transformation

M2C
Transformation

M2C
Transformation

Model capturing the UI
behavior

Task & domain level
model

Model capturing the UI
structure + behavior

Final UI

M2M
Transformation

M2C
Transformation

Figure 2.4: UI generation with separated structure and behavior model

The positive and negative aspects of GUI generation with separated structure and behavior are:

• Pro: Separation of concerns regarding the behavior and the structure of the GUI

• Con: GUI behavior and structure have to fit together

In contrast to Figure 2.4, Figure 2.5 illustrates a GUI generation process which generates one
model that captures the structure as well as the behavior of the GUI. Thus, there is no separation
of concerns. The Final UI is generated straight-forward from the model capturing the structure
and behavior of the GUI. The advantage of this approach is that there is no risk of inconsistencies
because the complete Final UI is generated out of one model. The disadvantage is that there is
no separation of concerns regarding the behavior and the structure of the GUI.

Task & domain level
model

Model capturing the UI
structure

Final UI

M2M
Transformation

M2M
Transformation

M2C
Transformation

M2C
Transformation

Model capturing the UI
behavior

Task & domain level
model

Model capturing the UI
structure + behavior

Final UI

M2M
Transformation

M2C
Transformation

Figure 2.5: UI generation process with combined structure and behavior model

2.3.2 Model-Driven Fully- vs. Semi-Automatic UI Generation

The model-driven UI generation process can be fully-automatic or semi-automatic. Fully-auto-
matic means that after the generation process has been started no manual modification is needed
in order to generate the Final UI. In contrast, a semi-automatic UI generation process needs
manual steps during the transformation process as illustrated in Figure 2.6. The manual step can
be e.g., a certain step in the transformation process that has to be done manually, selecting the
transformation rule to apply or to modify the UI structure on a certain level of abstraction (AUI
or CUI).

MDUID implies a conflict of interest. On the one hand, the UI generation process should be
as automated as possible, on the other hand it should be possible to influence the result of the
generation process, semi-automated. Fully-automatic UI generation provides the best results when
requirements are only given on the task and domain level. Thus, it has certain drawbacks when

10

Background on Model Driven Software Development

Task & domain level model Final UI

Manual steps

Transformation process

Figure 2.6: Semi-automatic UI generation process

a UI has to be generated according to a predefined UI design because it lacks the possibility
to easily influence the resulting Final UI. The approach presented in Chapter 3 of this doctoral
dissertation is fully-automatic. In Chapter 6 it is explained how the fully-automatic approach of
Chapter 3 deals with a predefined UI design. A semi-automatic UI generation process has the
advantage to influence the generation result. Thus, it better supports the generation of UIs based
on a given UI design. An idea of how the approach presented in Chapter 3 can be extended to
support semi-automatic UI generation is presented in [Ran10].

The ideal MDUID environment supports both fully-automatic and semi-automatic UI generation.
Depending on the given requirements the appropriate generation process is chosen.

11

3 Automated Discourse-based WIMP UI
Structure Generation

This chapter contains the main contribution of this doctoral dissertation. It presents the au-
tomated model-driven WIMP UI structure generation approach based on Discourse Models. It
focuses on the transformations from Discourse Model to Structural UI Model. It starts with
the transformation approach used to generate the WIMP UI structure. Then it presents the
input model of the transformation, the Discourse Model and the Domain of Discourse Model.
Afterwards the output model of the transformation is presented, the Structural UI Model. The
applied transformation process is explained. Subsequently the core of this work, the transforma-
tion rules to transform a Discourse Model to a Structural UI Model are presented. In particular,
the transformation rules for general purpose GUI [KBFK08], content transformation rules spe-
cific to intention [KFK09], finger-based touchscreen specific transformation rules [KRF+09] and
transformation rules for different screen sizes [KRP+10] are presented. Finally, the model-to-code
transformation is explained briefly, which is covered in detail in the diploma thesis [Ran08].

3.1 The Transformation Approach

A user interface generation process [KFK09] that transforms such Discourse Models into WIMP-
based graphical user interfaces (Windows, Icons, Menu and Pointers) has been developed. The
basic user interface generation process is illustrated in Figure 3.1 and consists of two steps.

Model2Model

Transformation

Model2Code

TransformationDiscourse

Model

Structural UI

Model

Final UI

Check for

Optimal UI

Further Optimization Possible

Optimal UI

Model2Model

Transformation

Model2Code

TransformationDiscourse

Model

Structural UI

Model

Final UI

The Transformation Process

The Extended Transformation
Process

Figure 3.1: The Basic Transformation Process

First the Structural UI Model is generated, using the Discourse Model and a device specification
as input. This Structural UI Model specifies the widget hierarchy of the UI. The Structural UI
Model is still independent of the GUI toolkit (in our case Java Swing) used to display the screens,
but it depends already on the target device, e.g., a touchscreen. Default values for metric widget

12

Automated Discourse-based WIMP UI Structure Generation

sizes are chosen according to the specified metric screen size of the device. Device properties
like screen resolution, etc., are taken into account either directly during the Structural UI Model
generation or by the code generator. In the second step, a code generator translates the Structural
UI Model into GUI toolkit specific source code.

The separation of the rendering process in two steps has the major advantage that the generated
Structural UI Model is still platform independent and can be translated into several different
GUI-toolkit languages in a second step. Another advantage is the possibility of influencing the
screen design through modifying the generated Structural UI Model, before triggering the actual
code generation, which is out of scope of this doctoral dissertation. This could lead to a more
satisfying Final UI.

3.2 Transformation Input - Discourse Model

The starting point for the automatic WIMP UI structure generation is a Discourse Model, see
[FKH+06, BFK+08, BKFP08, PFA+09]. Such a Discourse Model serves as an interaction design
on a high level of abstraction and is based on concepts of human language theories. It is largely
a declarative model and uses a self-defined Domain Specific Language (DSL) for specifying the
classes of possible dialogues or interactions between the human and the machine. The abstract
syntax of the DSL is based on the conceptual metamodel shown in Figure 3.2, which illustrates
the concepts used. It has the following key ingredients:

• Communicative Acts as derived from speech acts [Sea69] carrying propositional content,

• Adjacency Pairs adopted from Conversation Analysis [LFG90], and

• Discourse Relations, which are further specialized into RST Relations inherited from Rhetor-
ical Structure Theory (RST) [MT88] and Procedural Constructs.

Discourse

Node

RST Relation

Communicative Act

+ content

Adjacency PairDiscourse Relation

Procedural Construct

+child

2..*

+parent 0..1

0..*

inserted sequence

+opening
1

is adjacent to >

+closing
0..1

+rootNode 1

Figure 3.2: Conceptual discourse metamodel

13

Automated Discourse-based WIMP UI Structure Generation

Discourse Relations relate Nodes which can be Adjacency Pairs or other Discourse Relations, thus
building up the hierarchical structure of the discourse. Adjacency Pairs can contain embedded
dialogues, called inserted sequences, like clarification dialogues which may become necessary before
a communication party is able to answer a question, for example due to unreliable speech input in
multi-modal user interfaces. Thus, Adjacency Pairs are modeled in our metamodel as association
classes.

Communicative Acts represent basic units of language communication. Thus, any communication
can be seen as enacting of Communicative Acts, acts such as making statements, giving commands,
asking questions and so on. The Communicative Acts indicate the intention of the interaction,
e.g., asking a question or issuing a request and carries propositional content referring to elements
of the domain of discourse. The domain of discourse specifies the elements the discourse can talk
about.

Figure 3.3 shows a selection of the most important Communicative Acts used in this approach.
Two corresponding Communicative Acts, like Offer and Accept, form a sequence, which is called
Adjacency Pair to define the turn-taking and thus the order of the utterances. The Adjacency
Pairs build up the dialogue structure. In the special case of just informing the other dialogue
partner without making a dialogue turn, the Adjacency Pair degrades to an Adjacency Pair with
only an opening Communicative Act as shown in the satellite branch of the Background Relation
on the right in Figure 3.20.

Communicative Act

Assertion Directive Commissive

Informing Answer Question Request Accept OfferReject

Open Question Closed Question

is adjacent to
is adjacent to

is adjacent to

is adjacent to

is adjacent to is adjacent to

Figure 3.3: Selection of Communicative Act taxonomy

Figure 3.4 shows a selection of the most important RST Relations and Procedural Constructs
used in this approach. RST Relations specify relationships among text portions and associated
constraints and effects. The relationships in a text are organized in a tree structure, where the
rhetorical relations are associated with non-leaf nodes, and text portions with leaf nodes. In this
approach we make use of RST Relations for linking adjacency pairs and further structures made
up of RST relations with each other. They describe a subject-matter relationship between the
branches they relate and can be divided in two groups. RST SingleNucleusRelations having one

14

Automated Discourse-based WIMP UI Structure Generation

D
is

co
ur

se
 R

el
at

io
n

Pr
oc

ed
ur

al
 C

on
st

ru
ct

R
ST

 R
el

at
io

n

Se
qu

en
ce

IfU
nt

il
C

on
di

tio
n

R
es

ul
t

B
ac

kg
ro

un
d

El
ab

or
at

io
n

An
no

ta
tio

n
Ti

tle

Jo
in

t
C

on
tr

as
t

Al
te

rn
at

iv
e

R
ST

 M
ul

tiN
uc

le
us

R
el

at
io

n
R

ST
 S

in
gl

eN
uc

le
us

R
el

at
io

n

Figure 3.4: Selection of Discourse Relation taxonomy

15

Automated Discourse-based WIMP UI Structure Generation

nucleus and one satellite branch (e.g., Background) and RST MultiNucleusRelations having only
multiple nucleus branches (e.g., Joint). The Joint Relation is used to group Communicative Acts
of the same type. No presentation order is presumed. The Background Relation is used to express
that the satellite branch contains background information related to the nucleus branch.

Procedural Constructs,e.g., IfUntil provide means to express a particular order between branches
of the discourse tree, to specify repetition of a branch and to specify conditional execution of
different branches. Thus, Procedural Constructs add control structures to our discourse trees
that are more complex than usual if-then-else or repeat-until constructs in typical procedural
programming languages. When operationalizing the discourse tree, these Procedural Constructs
also determine which information cannot be presented together on one screen of a GUI. The
IfUntil Procedural Construct repeats the tree branch until a condition is fulfilled to execute the
then branch. A repeat condition restricts the number of allowed repetitions until the else branch
is uttered.

3.3 Transformation Output - Structural UI Model

Widget

Textbox

Panel ListWidget OutputWidget

Label

InputWidget

ComboBox

Choice

Button

Figure 3.5: Part of conceptual metamodel of Structural UI Models

The Structural UI Model is basically a tree representing the UI structure independently of any
toolkit (e.g., Web, Java Swing, etc.). It is not completely independent of the target device,
however, since the device’s real-estate is taken into account for building up the UI structure. Still,
our Structural UI Model is completely independent of the considered UI toolkit. This tree structure
will be transformed to a toolkit-specific Final UI. The concepts used in such a Structural UI model
are specified in the Structural UI metamodel shown conceptually in Figure 3.5. It only shows
the parts that are important to understand the examples illustrated later. The most important
concept of the metamodel is the Widget class. It is specialized into four functional categories:
OutputWidgets, InputWidgets, ListWidgets and Panels. The OutputWidgets present information
to the user in different ways like text and images and the InputWidgets gather information from

16

Automated Discourse-based WIMP UI Structure Generation

the user. Nevertheless, InputWidgets also convey information to the user like defaults, current
values and type and quantity of required information.

In the Structural UI Model, a complete tree or subtree with a Panel as its root element represents
a presentation unit. Hence, a complete Structural UI Model can, in general, be a forest consisting
of possibly several trees. Trees in the Structural UI Model that are alternatives, i.e., trees on the
same level resulting from discourse partitioning or Joint relations, will be linked in the Structural
UI Model via a Choice element as shown in the metamodel in Figure 3.5. The Choice element is
used to specify alternative presentation units, which can be used to fill in the same space.

3.4 The Discourse to Structural UI Model Transformation Process

Transforming Discourse Models to Structural UI Models [KBFK08], by applying model-to-model
transformations to Discourse Model elements, potentially results in a different Structural UI Model
for each device as illustrated in Figure 3.6. The resulting Structural UI Model represents the user
interface’s widgets and their structure, but still abstracts from details of the Final UI. A common
UI description language (e.g., UsiXML1) is not used because the runtime environment is based
on the exchange of Communicative Acts.

Discourse
Model

Structural UI Model
for

Mobile Phone

Structural UI Model
for

Desktop PC

Structural UI Model
for

PDA

M2M Transformation

M2M Transformation

M2M Transformation

Figure 3.6: The model-to-model transformation step

Figure 3.7 illustrates that the transformation of one presentation unit is fulfilled by mapping ele-
ments of the discourse metamodel to elements of the Structural UI metamodel. Both metamodels
are based on the Ecore2 meta-metamodel. Transformation languages like ATL3 (ATLAS Transfor-
mation Language) or MOLA4 (MOdel transformation LAnguage), which is used in this doctoral
dissertation to specify procedural transformation rules in Chapter 4 and 5, also support the same
transformation process, but these approaches lack conflict resolution strategies, requiring rules to
be carefully designed in a way that only one rule matches a model element at any time. This
is inappropriate for GUI rendering, since one wants to provide some general rendering rules and
some more specific ones matching the same element with the specific ones taking precedence over

1http://www.usixml.org
2Essential MOF like core meta model of the Eclipse Modeling Framework

(http://www.eclipse.org/emf/)
3http://www.eclipse.org/m2m/atl/
4http://mola.mii.lu.lv/

17

http://www.eclipse.org/emf/
http://www.eclipse.org/m2m/atl/
http://mola.mii.lu.lv/

Automated Discourse-based WIMP UI Structure Generation

the general ones. At the same time a state machine is generated from the Discourse Model which
controls the sending and receiving of Communicative Acts. This latter generation is beyond the
scope of this doctoral dissertation, however.

Ecore

Discourse
Metamodel

Structural UI
Metamodel

mapping

Discourse
Model

Structural
UI Model

transformation

conformsTo conformsTo

conformsTo conformsTo

Figure 3.7: The Discourse Model to Structural UI Model transformation process

The Discourse Transformation Language (DTL) has a rule-based engine that is based on the
Ecore5 model. The metamodels for Discourse Models and Structural UI Models are instances
of the Ecore model and thus provide common model navigation in the source and target model
and linking between elements of both models. This feature is used to add traceability links from
widgets in the Structural UI Model to the original elements in the Discourse Model. Thus, the
original information is also available during the final screen generation process.

The transformation engine iterates over all elements of a Discourse Model and first checks which
rules trigger for the currently processed element. For a rule to trigger, two conditions must hold:

• the discourse pattern in the rule must match the corresponding part in the Discourse Model,
and

• specified rule constraints must match the device properties we want to render for (e.g., screen
real estate).

The transformation engine gets the discourse and the domain-of-discourse models as input and
transforms them into a Structural UI Model. This transformation takes device properties into
account. The transformation engine performs a model-to-model transformation based on rules.
Such a transformation rule can state, for example, that each “Informing” communicative act
found in the Discourse Model has to be transformed to a panel containing a label widget for each
domain-of-discourse object referred to by the communicative act’s propositional content.

Our model-to-model transformation process consists of two interleaved transformation steps:

1. The first step applies rules to Discourse Model elements that generate an overall UI structure
by use of pattern matching. These rules generate abstract widgets like labels for headings
and placeholders for data of the propositional content. They also associate parts of the
propositional content with the generated placeholders.

5see http://www.eclipse.org/modeling/emf/ for the Eclipse Modeling Framework (EMF) specification.

18

http://www.eclipse.org/modeling/emf/

Automated Discourse-based WIMP UI Structure Generation

2. The second step executes content transformation rules within the context of the rules of the
first step. This embedding allows the selection of abstract widgets for the resulting structural
UI depending on the content type, the content’s referring communicative act type and the
current context the communicative act is embedded in as defined by the enclosing rule.

3.5 Transformation Rules

After having introduced the general transformation principles as well as the input and the output
model of the transformation, it is concentrated on the transformation rules for mapping a Discourse
Model to a Structural UI Model. They are specific to certain structural patterns occurring in the
Discourse Models. Discourse Model excerpts are used as examples to illustrate the impact of
different kinds of rules. However no Discourse Model was found that covers all desired aspects.
Thus, the Discourse Model excerpts had to be taken from different Discourse Models to illustrate
different aspects of the transformation rules.

The transformation rules have been developed starting with the specification of Discourse Model
examples, e.g., online shop, flight booking. First the desired GUI for a Discourse Model example
was sketched on paper. Then the Structural UI Model according to the sketched GUI structure was
created manually. Finally the transformation rules that create the desired Structural UI Model
parts have been derived considering the source Discourse Model and the expected Structural UI
Model. Different examples have been used to achieve generalized rules that are suitable for many
cases.

3.5.1 General Purpose GUI Transformation Rules

SN

adjacentTo

Background

Accept
(one category)

Informing
(category details)

O�er
(product categories)Shop

Customer

Figure 3.8: Subtree of an online shop discourse

Figure 3.8 shows a small part of an online shop Discourse Model, which we use as an example
to illustrate some general purpose transformation rules. The example describes an interaction
between the user and the online shop with the purpose of demanding the customer to select
one product category and supporting her with background information to ease her choice. The
nucleus branch N of the Background relation conveys the main interaction sequence. The online
shop system offers a list of product categories to the user. The user accepts one of them. During
the offering process the satellite branch S provides background information about the product
categories to the user. This part of an online shop Discourse Model gets transformed to the
Structural UI Model shown in Figure 3.9 by applying the rules Background, Adjacency Pair,
Offer-Accept and Informing to the corresponding Discourse Model elements in the listed order.

19

Automated Discourse-based WIMP UI Structure Generation

Panel
(�ow layout)

Panel
(grid layout)

ListWidget

Button
(category)

Widget
(nucleus !f(x))

ListWidget

Widget
(nucleus !f(x))

Label
(cat. details)

Panel
(grid layout)

Figure 3.9: Resulting Structural UI Model

The main contribution of this doctoral dissertation is how to transfer models as exemplified in
Figure 3.8 to Structural UI Models at the abstract widget level as in Figure 3.9. In particular, it
means a transformation from a mainly declarative model of a discourse to the toolkit-independent
structure of a user interface.

Figure 3.10 shows the generated GUI screen resulting from the Structural UI Model in Figure
3.9 corresponding to the Discourse Model excerpt in Figure 3.8. The labels from the Informing
Communicative Act are rendered next to (right side) the buttons of the Offer Communicative
Act.

Figure 3.10: Concrete UI (Screenshot)

Background Rule: Figure 3.11 shows a rule specific to the Background RST relation. The
satellite is rendered on the right side of the presentation unit, while the nucleus occupies the left
area, as an “aside”. In accordance to the rule above, the “most nuclear part” takes the interface
space that is of highest surface and most central to the user focus. Following this principle further,
the layout management of the presentation unit will always give precedence to the “nuclear" side,
e.g., when the window is resized by the user. This rule is used to generate the basic tree structure
of Figure 3.9, i.e., this rules generates the root panel and places the transformation results of the
pre-rendering of the nucleus and satellite subtrees next to each other by a flow layout manager.

20

Automated Discourse-based WIMP UI Structure Generation

The Background Rule can also be localized (adapted), e.g., for cultures that write from right
to left, where it may be more suitable to place the satellite at the left side. A system-wise style
configuration can also render light backgrounds to the top and to the left, like it is, e.g., customary
when the concrete user interface will be an HTML page. However, even there the space allocation
and re-allocation in case of resizing will prioritize the nuclear part. In Chapter 5 in Figure 5.2
this rule is illustrated specified in DTL.

N

subtree subtree

S

Background

Discourse Model

x

widget for
nucleus N
(in most
cases a
panel)

widget for
satellite S
(in most
cases a
panel)

Structure of UI

Panel
(�ow layout)

Widget
(nucleus)

Widget
(satellite)

Structural UI Model

Figure 3.11: Background Rule.

Adjacency Pair Rule: Each Adjacency Pair is transformed to a Panel element of the Structural
UI Model containing widgets according to the related Communicative Acts. In this example, the
first panel on the second level in Figure 3.9 results from the application of the Adjacency Pair Rule
to the Offer-Accept adjacency pair. In Chapter 5 in Figure 5.4 this rule is illustrated specified in
DTL.

Offer-Accept Rule: Each Offer -Accept adjacency pair is transformed either to a Button or
to a ListWidget element containing Buttons, depending on the cardinality of the content offered.
Because our example online shop can offer more than one product category, the ListWidget element
is needed to model an undefined number of categories. Since the acceptance of an Offer requires
a user action, a Button element is embedded in the ListWidget in Figure 3.9. As a result, the
subtree of the ListWidget is repeated according to the actual number of product categories in the
Final UI. In Chapter 5 in Figure 5.6 this rule is illustrated specified in DTL.

Informing Rule: Each Informing communicative act is transformed either to a Label element or
to a ListWidget element containing a Label element, depending on the cardinality of the content.
This rule assumes that the information will be forwarded in textual form, otherwise, e.g., a
PictureBox or AudioPlayer element will be used. In the online shop example, information is
conveyed for each product category and, therefore, a ListWidget containing Labels is generated.

In the following for each Discourse Model element, which is not covered yet and by the following
Discourse Model excerpt examples, one general purpose rule is presented that creates one possible
target pattern. However in many cases there are different possibilities to render a source pattern
and therefore multiple rules exist for each source pattern. The transformation rules are named
according to the source element they match.

Transformation rules for Communicative Acts:

Open Question-Answer Rule: The Open Question-Answer Rule matches an Adjacency Pair
relating an open question and an answer and transforms it to a panel containing a label for the
question text, input and output widget placeholders for the content, and a submit button for

21

Automated Discourse-based WIMP UI Structure Generation

submitting the answer. The rule also assigns all attributes of the open question’s propositional
content type to both placeholders.

Request-Accept, Reject Rule: The “Request-Accept, Reject Rule” matches an Adjacency Pair
relating a request with an accept and reject and transforms it to a panel containing a label for
the request text, an accept button for accepting the request and a reject button for rejecting the
request. This rule layouts the label on top of both buttons. The buttons are placed next to each
other, the accept button on the left the reject button on the right.

In some cases it makes sense to define Adjacency Pairs where the opening Communicative Acts
is send by the user and the closing by the machine. An example would be the Request-Accept,
Reject Adjacency Pair with the following transformation rule:

Request-Accept, Reject Rule (Opening Communicative Act send by user): The rule
matches an Adjacency Pair relating a request, which is send by the user and refers to an object
of the domain of discourse, with an accept and reject and transforms it to a choice containing
a panel each for request, accept and reject. The request panel contains a label for the request
text, input and output widget placeholders for the content, and a submit button for submitting
the request. The rule also assigns all attributes of the request’s propositional content type to
both placeholders. The accept panel contains a label for the headline “Request Accepted” and
a label for the accept message received form the machine. The reject panel contains a label for
the headline “Request Rejected” and a label for the reject massage received from the machine. In
contrast to the “Request-Accept, Reject Rule” where the Opening Communicative Act is sent by
the user and the UI only has to provide the possibility to accept or reject the request, this rule
has to provide the possibility to send the request as well as the presentation of the acceptance or
rejection.

Transformation rules for Procedural Constructs:

The Procedural Constructs have different behavioral semantics but the same influence on the UI
structure. They result in the unique presentation of one of the their branches at the same time,
which is modeled in the target pattern of the rule with a choice element as the root.

Transformation rules containing choice as the root element of the target pattern cannot be layouted
because the containing elements will not be displayed at the same time and, therefore, will not
have to share the screen space.

Sequence Rule: The Sequence Rule matches the Sequence Procedural Construct and transforms
it to a choice.

IfUntil Rule: The IfUntil Rule matches the IfUntil Procedural Construct and transforms it to a
choice containing a panel for each of the three branches of the IfUntil.

Condition Rule: The Conition Rule matches the Condition Procedural Construct and trans-
forms it to a choice containing a panel for each of the two branches of the condition.

Transformation rules for RST MultiNucleusRelations:

Transformation rules for RST MultiNucleusRelations can not be pre-layouted in the rule due to
the undefined number of nucleus branches. It has to rely on the automatic layouting, which will
try to put the nucleus branches next to each other if possible.

Joint Rule: The Joint Rule matches the Joint relation and transforms it to a panel. All nucleus
branches of the Joint relation are mapped to the panel.

22

Automated Discourse-based WIMP UI Structure Generation

Alternative Rule: The Alternative Rule matches the Alternative relation and transforms it to
a choice.

Contrast Rule: The contrast Rule matches the Contrast relation and transforms it to a choice.

In some cases it makes sense to define Discourse Relations which are evaluated by the user instead
of the machine. An example for a rule for such a Discourse Relation is given in the following:

Alternative Rule (evaluated by the user): This rule matches the Alternative relation which
is assigned to the user and transforms it to a panel. All Alternative relation branches will be
displayed at the same time to give the user the possibility to choose from the alternatives and
layouted by the automatic layouter.

Transformation rules for RST SingleNucleusRelations:

Elaboration Rule: The Elaboration Rule matches the Elaboration relation and transforms it to
a panel containing a panel for the nucleus branch and a optional element for the satellite branch.
The optional element is used to model a panel, which is only displayed after a condition is fulfilled.
The panel for the nucleus branch is layouted to the left and the optional element is layouted to
the right.

Title Rule: The Title Rule, illustrated in Figure 3.12, matches the Title relation and transforms
it to a panel containing a panel for the satellite branch and a panel for the nucleus branch.
The panel for the satellite branch is layouted on top of the panel of the nucleus branch because
the satellite branch conveys title information related to the nucleus branch and thus is of major
importance.

N

subtree subtree

S

Title

Discourse Model

x

widget for nucleus N
(in most cases a panel)

widget for satellite S
(in most cases a panel)

Structure of UI

Panel
(grid layout)

Widget
(satellite)

Widget
(nucleus)

Structural UI Model

Figure 3.12: Title Rule

Annotation Rule: The Annotation Rule, illustrated in Figure 3.13, matches the Annotation
relation and transforms it to a panel containing a panel for the satellite branch and a panel for
the nucleus branch. The panel for the satellite branch is layouted below the panel of the nucleus
branch because the satellite branch conveys annotation information related to the nucleus branch
and this is of minor importance.

Result Rule: The Result Rule matches the Result relation and transforms it to a choice con-
taining a panel for the nucleus branch and a panel for the satellite branch.

3.5.2 Content Transformation Rules Specific to Intentions

During the UI generation we had to deal with the presentation of content of the domain of
discourse. In particular, the concrete presentation needs to depend on the purpose of the envisaged

23

Automated Discourse-based WIMP UI Structure Generation

N

subtree subtree

S

Annotation

Discourse Model

x

widget for nucleus N
(in most cases a panel)

widget for satellite S
(in most cases a panel)

Structure of UI

Panel
(grid layout)

Widget
(satellite)

Widget
(nucleus)

Structural UI Model

Figure 3.13: Annotation Rule

interaction, since the GUI’s usability would clearly not be satisfactory otherwise, and usability is
one of the essential problems of automatically generated user interfaces. In this subsection, the
approach to automatic content generation with content transformation rules specific to intentions
[KFK09] is presented.

Figure 3.14 shows an example in two small excerpts of a larger Discourse Model for a simple
online shop. Figure 3.14a shows two Communicative Acts (represented by rounded boxes), a
closed question and an answer, for adding a product to the customer’s shopping cart. For this
purpose, the formal expression within the closed question enables the customer to select one
instance from all instances of the class Product, and provides the intention of the question, adding
the selected instance to the ShoppingCart represented by the variable sc. Figure 3.14b shows a
different part of the Discourse Model, for informing the customer on all products available in the
store.

OnlineShop Customer

Answer

ClosedQuestion

select one from all Product
for addTo ShoppingCart::sc

Closing

Opening

(a) Closed question about a prod-
uct to select for adding to the
shopping cart

OnlineShop Customer

Answer

Informing

all Product

ClosedQuestion

select one from all Product
for set Product::product

Closing

Opening (b) Informing on all products avail-
able in the store

Figure 3.14: Excerpts of an online shop Discourse Model

24

Automated Discourse-based WIMP UI Structure Generation

Communicative Acts typically refer to propositional content. In this example, it is about selecting
a product by the customer and providing information on all products. In Figure 3.14 the propo-
sitional content is specified by the text below the type of each communicative act. In fact, it is
the same propositional content for both communicative acts (all Product6) that gets uttered.

Propositional content is specified in our approach in a model of the domain of discourse, which
specifies what the dialogues can “talk” about. Figure 3.15 shows a very small excerpt of such a
model in a UML class diagram.7 It specifies a single class named Product with four attributes.

Figure 3.15: Small excerpt of a domain of discourse model

This example does not show a Discourse Relation. Both excerpts in Figure 3.14 originate from
different parts of a larger Discourse Model and are, therefore, more indirectly connected with each
other. Still, one can imagine to link the Closed Question-Answer Adjacency Pair in Figure 3.14a
via a Background relation with an Informing on the category the customer can choose from to
support her in selecting a product.

For transforming the Discourse Model excerpts in Figure 3.14a and 3.14b, we need structural
transformation rules for transforming the Question–Answer Adjacency Pair and the Informing
Communicative Act (that makes up a degraded Adjacency Pair by itself). Second, we need content
transformation rules for transforming content types, like strings, pictures and numbers depending
on the Communicative Act they are embedded in. The transformation rules also contain heuristics
to improve the generated Structural UI Model. For example, rules can transform content attributes
differently based on their attribute name, e.g. a name attribute can be used as a heading for the
rendered content. The two structural rules below are applied in the first step to our Discourse
Model excerpts in Figure 3.14:

Closed Question-Answer Rule: The rule in Figure 3.16a transforms each Closed Question-
Answer Adjacency Pair to a Panel ClosedQuestionNameOnly with a Label Anonymous and a
List Widget Closed Question List, with each list entry consisting of an Output Widget Label
placeholder for the content object’s identifier (e.g., name) and a Button Select to select this
list item. The output widget placeholder has a property that holds an OCL8 expression, which
selects parts of the content object the output widget is a placeholder for. For example, the
Output Widget Label selects the name attribute of the content object, e.g., the product name,
which is later on used for generating the label widgets. The corresponding OCL expression is
“eAllAttributes→select(name=‘name’)”.9 This and the other properties of the Output Widget
Label are not shown in Figure 3.16a. The Label Anonymous represents a heading for the overall
list and its text is derived from the name of the matched closed question Communicative Act.

6Product refers to the class with this name in the model of the domain of discourse.
7At the time of this writing, the specification of UML is available at http://www.omg.org.
8OCL — Object Constraint Language, see http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 for its specifi-

cation.
9“eAllAttributes” is part of EClass in the underlying ECore meta-meta-model, which is an Essential Meta-Object

Facility (EMOF) implementation in the Eclipse Modeling Framework (EMF).

25

http://www.omg.org
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

Automated Discourse-based WIMP UI Structure Generation

(a) Closed Question-Answer Rule (b) Informing Rule (for many Objects)

(c) String data type Rule (d) Double data type Rule

(e) Picture Rule (f) Attribute name Rule

Figure 3.16: Transformation rules for closed question-answer (a) and informing (b), rules for transform-
ing output widgets depending on data types (string (c) and double (d)), and for transfor-
mations based on heuristics (pictures (e) and attribute names (f))

The generated Grid Layout elements allow the specification of the desired number of columns for
the resulting list and the placement of the label and the button next to each other as shown in
the Final UI in Figure 3.18.

Informing Rule (for many Objects): The rule in Figure 3.16b matches an Adjacency Pair
linked to an Informing (upper part of the figure). The Informing Communicative Act has to
contain more than one content object (indicated by an all or many quantifier) for generating a
list in the structural UI model. The rule transforms the matched input to a List Widget which
contains the structure of one list item. The list widget contains Output Widget placeholders for
the transformed content. The Output Widget Heading selects again the name attribute of the
content object as representative for a list element’s heading. The OCL expression for filtering
out the name attribute is identical to the one in the Closed question–answer transformation rule.
Each of the other two output widget placeholders is a placeholder for all the other attributes of
the content object. In the second stage, both are rendered differently, the Output Widget Name
is used to render the attributes’ names and the Output Widget Informing is used to render the
attributes’ values. This distinct rendering can be seen in the Final UI in Figure 3.19 below with
the attribute names on the left side and the attribute values on the right side.

Within the context of the rules described above, the following four rules are used in the online shop
example excerpts in Figure 3.14 in the second step. They transform content object parts—mainly
attributes—based on their content type and the type of Communicative Act that the content

26

Automated Discourse-based WIMP UI Structure Generation

object is referred from.

String content type Rule: The rule in Figure 3.16c matches the String content type. The
name of the rule reflects the matched content type. It generates a label for each string with the
content value as the label’s text. The context of this rule is specified by two Type Constraints.
The first one specifies that this rule can be applied only to Output Widget placeholders generated
in the first step, and the second one specifies that this rule can only be executed in the context
of Informing and Closed Question Communicative Acts. In our example, this rule generates a
label widget in the resulting structural UI model for each product attribute of type string that is
associated with an output widget placeholder.

Double content type Rule: The rule in Figure 3.16d is identical to the String content type
Rule apart from matching attributes of type double instead of type string. Thus, it creates a label
for each numerical attribute. The name of the rule again reflects the matched content type.

Picture Rule: The rule in Figure 3.16e matches also content of type string like the String
content type Rule but contains an additional constraint. This rule is only applied in the context of
output widget placeholders and Informing Communicative Acts, which is specified by the two Type
Constraints in Figure 3.16e. In addition, this rule contains a Value Constraint that checks if the
name of the content attribute contains either the text “picture” or “image”. If this constraint holds,
the “picture” attribute’s value is interpreted as a filename or URL and a PictureBox is generated
in the resulting structural UI model for this content attribute. Since this rule is more specific
than the string content type transformation rule, this rule is applied first when both match.

Attribute name Rule: The rule in Figure 3.16f matches any content attribute and is executed
in the context of output widget placeholders and any kind of communicative acts. In contrast to
the String content type Rule, this rule generates a label using the attribute’s name instead of its
value as label text. The attribute’s name is retrieved in the rule by assigning the OCL expression
“self.name” to the Label widget contained in the rule.10

(a) Structural UI Model corresponding to
the Closed Question-Answer

(b) Structural UI Model correspond-
ing to the Informing

Figure 3.17: Structural UI Models corresponding to the online shop Discourse Model excerpts in Fig-
ure 3.14

When these rules are applied to the example discourse excerpts in Figure 3.14, we get the generated
Structural UI Model illustrated in Figure 3.17a for the Discourse Model excerpt in Figure 3.14a,

10The context for evaluating the OCL expression is the matched EAttribute object of the Ecore model.

27

Automated Discourse-based WIMP UI Structure Generation

and the Structural UI Model in Figure 3.17b for the Discourse Model excerpt in Figure 3.14b, re-
spectively. The resulting structure of the Closed Question-Answer Adjacency Pair in Figure 3.17a
corresponds to the structure shown in Figure 3.16a with the output widget placeholder replaced
by the application of the String content type Rule. The resulting structure of the Informing in
Figure 3.17b corresponds to the structure of the Informing rule in Figure 3.16b with the output
widget placeholders replaced by applying all four content transformation rules to the attributes
of an online shop product. The set of content transformation rules that can be applied is defined
by the context formed by the superior structural transformation rule and the matched commu-
nicative act type (purpose of conveyed content). The context has to match all type constraints of
the content transformation rules.

The rationale for generating the content presentation differently in this way is as follows (the
screen shots in Figures 3.18 and 3.19 below may illustrate it better than the Structural UI Model
in Figure 3.17). We render the content item in the context of the Closed Question less completely
than in the context of the Informing, to provide a better overview for the customer during her
product selection process. More precisely, in the context of the closed question only the name
of the product is displayed, together with a select button. In contrast, the same content item is
presented in the context of Informing by showing all its available information, even including a
picture and the names of the attribute fields. So, the different context matters, since the purposes
are different: asking vs. informing.

In case of content transformation rules which match content types, constraints can be specified on
the rendering context, e.g., they can be used to constrain the set of types of Communicative Acts
the content must appear in. This permits restricting a rule to a specific set of Communicative
Acts. The four content transformation rules all match content of Informing Communicative Acts.
However, only the string and double content type transformation rules can also be applied to
content of closed questions.

When multiple rules trigger, a conflict resolution strategy is used to select one rule for firing. The
conflict resolution strategy selects the most specific rule based on the size of the pattern to match
and the number of constraints. In addition, a rule priority can be used to select one of many
rules that have the same specialization degree. For this example, rule priorities are not necessary
because the rules can be uniquely selected for firing without them.

Figure 3.18: Screenshot of the Final UI representing the ClosedQuestion

When a rule fires, its widget tree structure is added to the resulting Structural UI Model and
the widgets’ content is selected from the Discourse Model by evaluating OCL expressions on the
currently processed Discourse Model element. Using this rule-based transformation engine with
the rules described leads to the device-specific but GUI toolkit-independent Structural UI Model
as shown, for example, in Figure 3.17.

A Structural UI Model resulting from our model transformation process, like the one in Fig-
ure 3.17a or 3.17b, contains already the complete structure and layout information of the GUI

28

Automated Discourse-based WIMP UI Structure Generation

but is still GUI toolkit-independent.

Figure 3.18 displays the screen resulting from the Structural UI Model in Figure 3.17a by applying
the screen generation for Java Swing. Figure 3.19 shows the screen resulting in analogous manner
from the Structural UI Model in Figure 3.17b. In this example, we achieved a one-to-one map-
ping between structural model widgets and Java Swing widgets, only the PictureBox widget in
Figure 3.17b is mapped to a Java ImageIcon embedded into a JLabel. In some cases, the mapping
process is more complex, e.g., our structural UI metamodel contains an image map widget which
requires an image, a label widget and the implementation of multiple active areas within Java
Swing.

Figure 3.19: Screenshot of the Final UI representing the Informing on all products

3.5.3 Finger-based Touchscreen Specific Transformation Rules

This subsection explains how different transformation rules are used for automated GUI generation
in a way that takes pointing granularity into consideration [KRF+09]. More precisely, WIMP
(window, icon, menu, pointer) UIs are generated. The model-transformation rules can be divided
into different rule sets according to specific device properties. One rule set is suitable for fine
granularity, another rule set for coarse granularity. Both rule sets have a common core, however.
These different rules can result in different layout, widget size and even widget type selection. The
generator program chooses the respective rule set according to the specified properties. Example
applications for the rules that take coarse granularity into account are finger-based touchscreen
applications and applications for motor-impaired users.

29

Automated Discourse-based WIMP UI Structure Generation

A small excerpt of a larger Discourse Model for interacting with a robot shopping cart is shown
in Figure 3.20. This Discourse Model is used to illustrate transformation rules specific to pointing
granularity. The part shown in Figure 3.20 models presenting the current state of the customer’s
shopping list that she has entered before and the possibility of removing items from the shopping
list.

In the Discourse Model excerpt example in Figure 3.20, the robot cart may ask a closed question or
inform the customer, while the customer can provide an answer to the question. The association
of a Communicative Act with a communication party is done by color. In this example, the green
(or dark gray) Communicative Acts are uttered by the robot cart and the yellow (or light gray)
ones are uttered by the customer.

Figure 3.20: Discourse Model excerpt

The expression “select one from all ShoppingList::shoppingList.items for removeFrom-
ShoppingList Shopping::item” tells that the customer may select one item from the items of
her shoppingList to remove it from the list; shoppingList is a variable of type ShoppingList,
which is a reference to the ShoppingList class in the domain of discourse model.

In the Discourse Model excerpt example in Figure 3.20, the question–answer pair and the informing
are related by a Background relation. This Background relation states that the Informing in
the satellite branch contains background information to the “nuclear” utterances to support the
customer in answering the closed question. It is transformed by a specific rule for the Background
relation that renders the satellite branch below the nucleus branch instead of placing it next to it,
due to a given GUI design that required so. This relation does not imply a temporal order per se.
For instance, both pieces of information can be presented in parallel as done in the graphical user
interface shown in Figure 3.24. On the other hand, if the cart uses speech for asking the customer,
a natural order would be to ask the question first, then to provide the background information,
and finally to wait for the answer of the customer. Thus, the Discourse Models specify classes of
dialogues, with different possible orders of communicative act utterances.

In order to parameterize the semi-automatic user interface generation approach for diverse devices,
some formal specification of devices and their properties is needed. Specifying physical devices, like

30

Automated Discourse-based WIMP UI Structure Generation

desktop PCs and PDAs, and their physical properties, e.g., screen size, resolution and supported
GUI toolkits, allows us to generate graphical user interfaces with an appropriate screen layout,
for example. A physical device specification is often insufficient for semi-automatic user interface
generation, however, since it does not specify how an application makes use of the physical device.
For instance, if a touchscreen is available, an application can use the device in different ways
by imposing different interaction styles—pen-based interaction or finger-based interaction. These
different ways of use shall be reflected in the user interface generation too, since finger-based
interaction requires larger input widgets than pen-based interaction. Consequently, application-
tailored device specifications in addition to physical device specifications are introduced.

Figure 3.21 illustrates both kinds of device specifications and their relation. The application-
tailored device is derived from the physical device as a specialization and inherits the physical
device properties from it. For instance, such properties are screen resolution and DPI, which
together specify the metric screen size as well. The additional properties of the application-
tailored device specify how the physical device is used by the application. For example, a physical
device “touch screen” that can be either used with a pen or with fingers requires the additional
property “pointing granularity” to be included in the application-tailored device specification.
This property can have the value “coarse” for finger-based interaction, whereas for pen-based
applications the “pointing granularity” will have the value “fine”.

Device
Specification

Physical Device
Resolution: 1280x1024
DPI: 72
Colors: 24bit

Device Properties

Application-
tailored
Device

Pointing granularity:
coarse
Virtual keyboard: yes

Device Properties

Figure 3.21: Physical and application-tailored device specifications

An application can further combine physical and virtual devices in a special way. For instance, a
touchscreen solution usually does not include a physical keyboard. Nevertheless, an application
could require the presence of a virtual keyboard, which in turn imposes constraints (especially
spatial layouting constraints) on the automatic user interface generation. Therefore, the spec-
ification of application-tailored devices includes also properties defining the inclusion of virtual

31

Automated Discourse-based WIMP UI Structure Generation

devices.

Having such application-tailored device specifications available, user interface transformation rules
and code generation can be restricted to a set or range of device property values. The model-
transformation rules are divided into different rule sets accordingly. Applying rules from these
different rule sets can result in different layout, widget size and even widget type selection. The au-
tomated UI generation chooses the respective rule set according to the specified device properties.
For example, rules for a coarse pointing granularity—due to finger-based use of the device—can
lead to larger widgets or avoidance of complex widgets like drop-down boxes.

Figure 3.22: Structural UI Model excerpt automatically generated for touchscreen

For transforming the Discourse Model excerpt in Figure 3.20, structural transformation rules
for transforming the Closed Question-Answer Adjacency Pair and the Informing Communicative
Act as well as the Background relation are needed. Second, content transformation rules for
transforming content types, like string, picture and number dependent on the Communicative Act
they are embedded in are needed. The transformation rules also contain heuristics to improve the
generated Structural UI Model. For example, rules can transform content attributes differently
based on their attribute name, e.g., a name attribute can be used as the heading for the rendered
content. The structural rules below illustrate the difference between rules applied to the same
Communicative Act for different device specifications.

Closed Question-Answer Rule for coarse granularity: This rule transforms each Closed
Question-Answer Adjacency Pair to a panel with a label and a list with each list entry consisting of
an output widget placeholder for the content object’s identifier (e.g., name). The label represents
the heading for the overall list and the label’s text is derived from the name of the closed question
communicative act. A property is set in the list widget element of the structural UI model
that enables the generation of Scroll Buttons for the list. The result of this rule is the rendered
“Shopping List” in the left part of Figure 3.23. Due to the coarse pointing granularity, the clickable
area for each list entry is extended to the size of the whole list entry.11

11The size of this figure as given here is on purpose nearly the real size on the physical device. The minimum
target size on the device is as suggested in the literature referenced above.

32

Automated Discourse-based WIMP UI Structure Generation

Figure 3.23: Final finger-based touchscreen user interface

33

Automated Discourse-based WIMP UI Structure Generation

Figure 3.24: Excerpt of final desktop user interface

Closed Question-Answer Rule for fine granularity (scrollable list): This rule transforms
each Closed Question-Answer Adjacency Pair to a panel with a label and a list with each list
entry consisting of an output widget placeholder for the content object’s identifier (e.g., name)
and a button. In contrast to the “Closed Question-Answer Rule” in Section 3.5.2 this rule creates
a scrollable list. The label represents the heading for the overall list and the label’s text is derived
from the name of the closed question Communicative Act. The result of applying this rule can be
seen in the upper part of Figure 3.24. Due to the fine pointing granularity, the clickable area for
each list entry is restricted to the size of the remove button. Additionally, a scrollbar is added to
the right of the remove buttons.

Informing Rule (for one Object): This rule matches an adjacency pair with an Informing
communicative act (upper right part of Figure 3.20). The rule transforms the matched input to a
Panel containing two Output Widget placeholders. One is used to render the name and one the
value of the attributes of the referred content. The output widget placeholders have a property
that holds an OCL12 expression which selects all attributes of the referred content. As can be seen
at the bottom left part of Figure 3.23 and the bottom of Figure 3.24, the Informing is rendered
equally in both cases, independently of the pointing granularity. This implies that output widgets

12OCL – Object Constraint Language, see http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 for its specifica-
tion

34

http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

Automated Discourse-based WIMP UI Structure Generation

are not influenced by the pointing granularity. Therefore, this rule belongs to the set of common
core rules.

When these rules are applied to our Discourse Model excerpt in Figure 3.20, we get the generated
Structural UI Model for touchscreens illustrated in Figure 3.22. The resulting structure of the
Closed Question-Answer Adjacency Pair in Figure 3.22—the panel ClosedQuestionShoppingList
and its children—corresponds to the structure described in the “Closed Question-Answer Rule
for coarse granularity” and is illustrated in the Final UI as the Shopping List in Figure 3.23.
The resulting structure of the Informing in Figure 3.22—the panel InformingShoppingList and
its children—corresponds to the structure described in the “Informing Rule (for one Object)”. It
is shown in the Final UI by two labels below the Shopping List in Figure 3.23. The label with
the text “Press List item to REMOVE Product” results from the “Closed Question-Answer Rule
for coarse granularity”. It is contained in the Structural UI Model in Figure 3.22 as the label
“HelpText”. The output widget placeholders are replaced by the appropriate second level rules.

The Structural UI Model generated for fine granularity is similar to the one for touchscreens with
coarse granularity. It additionally has a Remove button contained in the list widget element of the
closed question panel. The resulting buttons in the Final UI are shown on the right in Figure 3.24.

3.5.4 Transformation Rules for Different Screen Sizes

Automated generation of UIs has certainly advanced in recent years, especially based on model-
driven approaches. Still, such generated UIs pose many usability problems. This is partly due to
insufficient flexibility of the current generation approaches.

Figure 3.25: A Discourse Model excerpt

In particular, straight-forward model-driven generation only allows for matching a single trans-
formation rule for each source pattern. This approach is extended by taking up means from
rule-based programming, that have been around for a long time. Matching of several transforma-
tion rules for any source pattern is allowed, and so-called conflict resolution is used to determine

35

Automated Discourse-based WIMP UI Structure Generation

which rule to apply (fire). Based on that, a simple form of optimization is implemented in the
context of model-driven UI generation.

It allows to maximize the amount of information to be displayed on a screen with limited resolution,
to minimize the number of navigation clicks, and to minimize scrolling. All this is important for
reducing usability problems. Since more and more devices with different screen resolutions are
used to run the same application, the generated UI can automatically be optimized for the given
(limited) resolution.

A small excerpt of a larger Discourse Model for flight booking is shown in Figure 3.25. This
Discourse Model is used as an example to illustrate transformation rules for different screen sizes,
presented in [KRP+10].

In this example, the application asks the customer closed questions, while the customer provides
answers to the questions. In Figure 3.25, two Question–Answer pairs are related by a Joint
relation. This Joint relation states that the Question–Answer pairs in both nucleus branches are
of equal importance. Further, it does not imply a temporal order per se. For instance, both pieces
of information can be presented in parallel if there is enough space on the screen. Otherwise they
can be uttered in sequence.

Figure 3.26: Generated UI for 640×480

The following transformation rules are applied to elements of the discourse model excerpt in Figure
3.25 for generating a model representing the structure of the Final UI in Figure 3.26.

First, the Joint Rule gets applied that matches the Joint relation and adds a panel to the Struc-
tural UI Model. This panel acts as a container for the Radio Button lists in Figure 3.26, which
correspond to the two nucleus branches of the Joint relation.

Second, a Closed Question Rule (radio buttons) gets applied twice that matches each of the
two Question–Answer adjacency pairs. For each adjacency pair a panel containing a label for a
heading, a list of radio buttons together with item labels, and a submit button on the bottom is

36

Automated Discourse-based WIMP UI Structure Generation

added to the Structural UI Model. The reason why two submit buttons are generated instead of
one is based on the approach with transformation rules. It can only be solved by considering the
behavior of the UI, which is out of scope of this doctoral dissertation.

In the second step this Structural UI Model is used to generate source code for a particular target
platform, e.g., Java Swing in this running example.

The problem tackled by this extended approach is to fit a given amount of information optimally
(in the following sense) into screens with limited resolution.

We assume that the following optimization objectives improve the usability of the generated user
interfaces:

• maximum use of the available space for the given resolution,

• minimum amount of navigation clicks, and

• minimum scrolling (except list widgets).

Whenever the given information to be displayed does not fit into a single screen with default
widgets, it is tried to display it with widgets that use less space. If it still does not fit into a single
screen, then its display is split to two or more screens. Splitting increases the number of navigation
clicks but it minimizes scrolling. List widgets are excluded from this last optimization objective
because the number of list entries can vary extremely at runtime and determines whether the list
is scrollable or not. This information is not known during the rendering process.

Model2Model

Transformation

Model2Code

TransformationDiscourse

Model

Structural UI

Model

Final UI

Check if UI fits

Screen Resolution

Further Transformation Possible

Fitting UI

or

Model2Model

Transformation

Model2Code

TransformationDiscourse

Model

Structural UI

Model

Final UI

No Further

Transformation

Possible

Figure 3.27: The Extended Transformation Process [RPK+11b]

The basic transformation process illustrated in Figure 3.1 in Section 3.1 looks like straight-forward
model-driven generation that only allows for matching a single transformation rule for each source
pattern. Therefore, the straight-forward approach is extended by allowing that several transfor-
mation rules may match for each source pattern, and by applying so-called conflict resolution
to select which rule to apply (fire) in the next model-to-model transformation. The extended
generation process shown in Figure 3.27 illustrates the resulting possibility of trying out several
rules for optimization purposes. In this approach, the rules need not to be specifically designed
for a particular screen resolution. It is rather the way the rules are applied that achieves the given
optimization objectives.

In order to implement such an optimization, the conflict resolution mechanism needs to select
the rules in a certain defined order. For achieving the optimization objectives given above, this
selection order is according to the space that the widgets the rule creates occupy in the Final UI.

37

Automated Discourse-based WIMP UI Structure Generation

Therefore, all rules matching the same discourse element for transformation have to be ranked by
the designer according to this space need.

Each target device that is rendered for has an abstract device specification that contains all style
data used by the transformation rules. These data specify default sizes for all input and output
widgets on the target device that can be overwritten in a transformation rule. They are used to set
the size for each Final UI element and allow us to calculate the exact size of each container (e.g.,
panel). For example, we set the size of the list widget explicitly. This makes it independent from
the number of entries. If the list widget is not able to display all entries, it becomes scrollable.

After the size calculation each generated screen is tried to layout to fit into the given resolution.
However, only the arrangement of the widgets that has not been fixed explicitly in a transformation
rule is modified. Therefore, the layout specified by the Closed Question Rule (radio buttons) (i.e.,
the layout of the heading label, the radio button list and the submit button in Figure 3.26) is not
changed. In this example, the position of the complete radio button lists in the panel created by
the Joint relation is modified, since the Joint Rule does not contain any layout information.

Now let us explain how to apply this approach to automatically generate user interfaces for three
target resolutions. As input the Discourse Model excerpt shown in Figure 3.25 is used.

The first GUI is rendered for the resolution 640×480. The first cycle of the model-to-model
transformation uses the highest ranked rules (i.e., the ones with the highest space need) for each
discourse element. These are the same rules that have been applied in our basic transformation
process. After the first transformation cycle the size for each panel in the corresponding Structural
UI model is calculated. They can be placed next to each other without exceeding the screen
resolution. So, this is a fitting UI and we trigger the model-to-code transformation. The result is
shown in Figure 3.26.

Figure 3.28: Generated UI for 480×320

Next a UI for the resolution 480×320 is generated. This time, the UI resulting from application
of the highest ranked rules does not fit. As long as a lower ranked rule can be applied, we initiate
another generation cycle. First, the Small Closed Question Rule is used in our example. This rule
matches the same source element (Question–Answer adjacency pair) as the Closed Question Rule
(radio buttons) but it creates a UI structure which occupies less space on the screen. A combo box
element presents the content of the Closed Question communicative act to the user and a submit
button is generated to confirm the selection of the user. The user interface shown in Figure 3.28

38

Automated Discourse-based WIMP UI Structure Generation

Figure 3.29: Generated UI for 320×180

is the result of two more cycles, because in each cycle only one lower ranked rule is applied. The
resulting UI fits and still presents the same information, but using widgets with less space needs
(combo boxes instead of radio buttons). However, the list widgets do not fit next to each other
and the layouter arranges them vertically.

In a third run, a user interface for the resolution 320×180 is generated. Even after all rules for
widget selection have been tried out, the generated GUI still does not fit the given resolution.
Therefore, rules are used that split the screen in order to increase the number of navigation clicks
before making use of scrolling. In this example, this means that in the next cycle the Small Joint
Rule is applied instead of the Joint Rule. The Small Joint Rule matches the same source element
(Joint relation) but creates a different UI structure (a tabbed pane element instead of a panel).
Figure 3.29 shows the outcome for the resolution 320×180. The Small Joint Rule and the Small
Closed Question Rule have been applied and a fitting UI has been generated after a third cycle of
rule application. This time no layout modifications are necessary because each tab contains only
one panel.

The worst case in the extended generation process occurs if and when no more rules are available
and the generated screen still does not fit the given screen resolution. In this case, we stop the
optimization loop and rely on scrolling.

A more sophisticated optimization strategy for small screens is presented in [RPK+11b].

3.6 Model-to-Code Transformation

The second step of the generation process is the actual screen generation. This process creates
the target toolkit implementation of the Final UI, that represents all windows and frames needed
to communicate with a user.

The code generator’s task is the translation of a Structural UI Model to source code in a spec-
ified programming language. Since graphical user interfaces usually consist of a limited number
of widget types combined in various ways, the resulting code can be seen as a combination of
corresponding code fragments.

The most appropriate generation approach, regarding the input of the process, is the combination
of meta-model and template-based generation. As large parts of our discourse modeling and
user interface generation platform are based on the Eclipse Modeling Framework13 and, therefore
on Java, Java Emitter Templates (JET) have been chosen as the template language. The code
generator was implemented as a template engine, using Java Swing14 as target toolkit.

13http://www.eclipse.org/modeling/emf/
14http://java.sun.com/products/jfc/

39

http://www.eclipse.org/modeling/emf/
http://java.sun.com/products/jfc/

Automated Discourse-based WIMP UI Structure Generation

The templates give the system designer a fair amount of flexibility as they support the separa-
tion between functionality and content. Static data already available at generation time can be
retrieved directly from the Structural UI Model. On the contrary, list widgets, for example, are
filled with dynamic data available only during runtime of the system. This allows the modification
of data without needing to generate the system again.

The Structural UI Model takes layouting into account, but hardly contains anything concerning
the look of the application. All this data can be encapsulated in a style sheet, whose elements are
then associated with the Structural UI Model elements. Moreover, the look aspect is something
that does not influence the logic of a system at all and can, therefore, be treated separately.

Cascading Style Sheets (CSS) encapsulate all information concerning the look of an object, making
it easy to adapt a system to a new look by simply exchanging the style sheet. Since CSS have
been designed for HTML pages, CSS attributes were mapped to Java Swing attributes within
the generator templates. Apart from this mapping, the code generator provides default values for
attributes like font type and size, as well as for border thickness and color. These default values
are needed in case the system designer does not specify all attributes needed by the generator. If a
style sheet is provided, all specified attributes are applied to the corresponding widget, overriding
the default values.

The code generator further supports the fall-back mechanism known from HTML. In a first step,
the generator tries to extract all the values from the CSS style that is associated with the Structural
UI Model widget’s identifier. If no widget-specific style is found, the code generator tries to extract
the values from the style class associated with the widget. In case no style class is defined for the
widget in the Structural UI Model, the code generator checks for a corresponding CSS element
style. If all attempts fail, the value is set to the default value that is predefined in the code
generator.

The code generator extends the basic functionality offered by CSS. An extension that influences
the look of an application is the representation of enumeration values through icons (e.g., tick
marks in Figures 3.23 and 3.24). Furthermore, decorative images or sounds can be specified for
different widgets.

Several further CSS templates are provided that define the sizes of several widget types. In this
way the style sheets capture not only characteristics regarding the look, but also the feel of an
application, e.g., in case of a touchscreen UI. The code generator selects the appropriate style
sheet template according to the application-tailored device specification and extracts the needed
information at generation time, specifying the button size or the size of each list widget entry in
Figure 3.23. The style sheets also define default values regarding the size and font of every widget
type. In this way, the minimum size of buttons or other interactive widgets like the shopping and
destination list in Figure 3.23 are set. As these settings are specified for a widget type, they are
valid for all widgets in the Structural UI Model unless they are overridden. Therefore, they can
be seen as default values for the application-tailored device. They can be refined either directly,
by editing values in the style sheet, or by attaching a style reference to the Structural UI Model
widget. In effect, the default values set by the template are substituted by the values defined in
the corresponding style class. This allows the system designer to customize the standard values
for selected widgets or widget classes.

The possibilities of style sheets however, do not cover all aspects concerning the feel of a user
interface on different application-tailored devices as they do not allow modifying the widget hier-
archy of the structural UI. This aspect is covered by the mapping rules applied during the first

40

Automated Discourse-based WIMP UI Structure Generation

generation step. An example are the additionally generated scroll-buttons for each list in Figure
3.23. Their generation results from the application of different transformation rules than the ones
applied for generating the desktop UI illustrated in Figure 3.24.

The style sheets are applied only during the second step of the generation, i.e., the Structural UI
Model to Java Swing translation. Any change to characteristics that are captured by the style
sheet, requires only the repetition of the second step instead of the whole generation process.

Screen generation is our final step that transforms the Structural UI Model into GUI toolkit-
specific windows and dialogs and generates code for them. Currently, the Java Swing15 and
Eclipse SWT16 GUI toolkits are supported. This screen generation step solves four tasks:

• It maps the abstract widgets of the structural model to toolkit-specific widgets,

• it maps the generic structural UI layout to a toolkit-specific layout,

• it formats the toolkit-specific widgets according to cascading stylesheets (CSS), and

• it generates the event handling and the binding to the user interface behavior (represented
as a generated finite-state machine that is derived from the Discourse Model obeying the
procedural semantics of the RST relations as described in [PFA+09]).

For transforming the layout information of the Structural UI Model, an algorithm is implemented
that calculates layout data required for the toolkit-specific layout managers. E.g., for the Java
Swing GridBagLayout the weight of each grid cell is calculated, which is important for resizing
windows, depending on the widget types and the layouting rule applied to the RST relation.

Further, the screen generation process formats the generated widgets according to style informa-
tion stored in a cascading stylesheet (CSS). The appropriate style is selected according to the
selection algorithm defined in the CSS specification based on the widget name, the style iden-
tifier and the widget type defined in the Structural UI Model. So, this provides a GUI toolkit-
independent mechanism for specifying widget styles that is transformed by the screen generation
into toolkit-specific method calls to set the toolkit widget’s attributes.

In addition, the screen generation results in toolkit-specific event handlers that

• collect information from the input widgets,

• modify content objects provided by the application logic according to the collected informa-
tion, or

• generate new content objects based on the collected information,

• and sends them to the application logic in response to a question or as a new request.

A detailed description of the model-to-code transformation for this approach to generate Java
Swing code is presented in the diploma thesis [Ran08].

15http://java.sun.com/products/jfc/
16http://www.eclipse.org/swt

41

http://java.sun.com/products/jfc/
http://www.eclipse.org/swt

4 Requirements-based GUI Prototype
Generation with Procedural Rules

Usually, model-driven generation of user interfaces (UIs) leads from higher-level task models to
UI models (at certain levels of abstraction) and a Final UI. So, in addition to operationalizing as
usual, we make use of artifacts in one “world” for creating related ones in another. Additionally,
we allow transformations in either direction between the same pair of models.

For such model transformations in one direction, we had to implement transformation rules. For
transforming back, rules for inverse transformations are needed as well. Rather than hand-crafting
them, we propose to generate them semi-automatically. In fact, we applied model transformations
to this task as well, through metarules.

We present this approach of bidirectional transformations between models of the same level of
abstraction in the context of the previously defined Requirements Specification Language (RSL)
[KSS+07]. In contrast to most other languages for requirements specification, RSL is a language
that integrates requirements with UI specifications [MK08]. This integration along the representa-
tion dimension is supposed to facilitate combined work on requirements and user interfaces along
the process dimension as well. In particular, we present an additional contribution to this doctoral
dissertation, transformations between artifacts of requirements and UI specifications within RSL,
presented in [KKMF09].

This chapter is organized in the following manner. First those parts of the RSL Metamodel needed
within the scope of this doctoral dissertation are sketched. Then the overall approach of transfor-
mations in this context is presented. For elaborating on this overall approach, we specify (MOLA1)
transformation rules from the requirements specification to an abstract UI specification, and vice
versa. In addition, we specify such rules for transforming from an abstract UI specification to a
more concrete UI prototype. Finally we present an approach to deriving inverse transformation
rules semi-automatically using metarules.

4.1 The RSL Metamodel

In this section some background material about RSL is presented. In particular, those parts of
its metamodel are explained for specifying requirements and UI upon which the transformations
are built.

1http://mola.mii.lu.lv/

42

http://mola.mii.lu.lv/

Requirements-based GUI Prototype Generation with Procedural Rules

UIStoryboard

ConstrainedLanguageRepresentation
ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

UIScene

sceneDescription: String
sceneNumber: int

ScenarioSentences::
ScenarioSentence

seqNum ber: int

ScenarioSentences::
SVOScenarioSentence

UserAction Notion
UIElements::UIElement

hasAutoContent: boolean
isM andatory: boolean

UIContainer
UIElements::

UIPresentationUnit

ConstrainedLanguageSentence
SVOSentences::SVOSentence

Requirement
UseCase

RequirementsSpecifications::
UseCase

1..* {ordered}

scenarioSteps

1..*
{redefines
sentences}

1..*

successor

1 0..1

predecessor

screenshot

target

0..*

0..*

source

triggeredUseCase 0..1

scenarios

0..*
{subsets representations}

Figure 4.1: Part of the RSL Metamodel linking RE and UI Specifications [KSS+07]

Scenarios and use cases are popular in requirements engineering these days. The ReDSeeDS Re-
quirements Specification Language (RSL) makes use of this popularity and includes ConstrainedLan-
guageScenarios contained in Use Cases. In the upper part of Figure 4.1, the composition relationship
between ConstrainedLanguageScenario class and UseCase class in the RSL Metamodel is shown. Con-
strainedLanguageScenarios provide a textual representation of use case scenarios illustrated in the left
part of the RSL Metamodel in Figure 4.1. They consist of a sequence of SVO sentences describing
the flow of interaction between the user and the system to be developed. An SVO sentence has
a Subject and a Predicate, which in turn has one Verb, and an Object, hence SVO. Each word
used in a sentence can be mapped to its specific meaning in the domain vocabulary. It is possible
to define the meaning of each word in this context, also by reusing terminology from WordNet
[WSBK08].

Moreover, RSL provides generic elements for specifying user interfaces (UI) that are both modality
and toolkit independent. The static aspects of the UI, i.e., its structure and layout, can be
described by using elements like InputUIElement for data input illustrated in the lower left part
of Figure 4.2; TriggerUIElement for triggering actions illustrated in the lower middle of Figure 4.2;
SelectionUIElement for exclusive or non-exclusive selection from more than two options illustrated in
the lowest middle of Figure 4.2; and UIContainer or UIPresentationUnit illustrated in the lower right of
Figure 4.2, which are used as containers of other UI Elements illustrated in the middle of Figure 4.2.
A concrete example for an InputUIElement would be a “TextBox” Widget. A concrete example for
a TriggerUIElement would be a “Button” Widget. A concrete example for a SelectionUIElement would
be a “ComboBox” Widget. A concrete example for a UIContainer or UIPresentationUnit would be a
“Panel” Widget.

43

Requirements-based GUI Prototype Generation with Procedural Rules

UIElement

- hasAutoContent: boolean

- isMandatory: boolean

DomainElement

Package

Notions::Notion
InputOutputDevice

- deviceId: String

InputUIElement

- dataValidation: String

OptionUIElement

- isReSelectable: boolean

PresentationOrder

SelectionUIElement

- maximumSelectableOptions: int

- sortCriterion: String

- sortOrder: String

TriggerUIElement

- executionTime: int

- isStatelessTrigger: boolean

UIContainer

ElementRepresentation

UIElementRepresentation

Requirement

UseCase

RequirementsSpecifications::

UseCase

UIBehaviourRepresentations::

UserAction

UIPresentationUnit

InputOutputType

- description: String

0..*

{"isReSelectable"

must have the

same value}

0..*

+source

1..*

{subsets

representations}

+representations

0..1

0..*

+temporalOrder

0..*

0..*

{ordered}

1..*

0..*

+target 0..*

+triggeredUseCase 0..1

0..*

+device 0..*

+spatialOrder

0..*

0..*

{ordered}

Figure 4.2: Part of the RSL Metamodel showing UIElements [KSS+07]

44

Requirements-based GUI Prototype Generation with Procedural Rules

The dynamics of the UI, i.e., the behavior related to user interaction, can be described by using
RSL elements like UIStoryboard, UIScene, and UserAction illustrated in the middle of Figure 4.1. A
UIStoryboard is a series of scenes displayed in a sequence.

Figure 4.3: A selection of elements of the GUI Profile provided by RSL [KSS+07]

The “presentations” of the individual scenes are defined in UIScenes. UIScenes can be connected by
UserActions indicating the triggering action of the user. A UserAction is performed on one source
UIElement in a predecessor UIScene and can result in a transition to a successor UIScene as well as
influence some of its UIElements. Of course, the source and target UIElements of a UserAction can be
the same. Figure 4.1 shows the relationship between dynamic UIElements of a UI Specification and
the ConstrainedLanguageScenarios of a Requirements Specification as one important link between the
two “worlds”.

Since these UI elements are modality independent, they specify an abstract UI (according to
[CCT+03]), that can be used for the different modalities found in advanced UIs. In order to make
a UI specification more understandable for a user, a modality specific concrete UI [CCT+03] is
better suited. For this purpose, RSL also includes related elements, whose concrete syntax can
even serve for specifying a UI Prototype. A selection of elements of the GUI Profile of RSL can
be seen in Figure 4.3.

4.2 Transformations from Requirements Specifications via UI Spe-
cifications to UI Prototypes

Based on the RSL language and its metamodel, let me illustrate my overall approach of trans-
forming between Requirements Specifications, UI Specifications and UI Prototypes. Figure 4.4

45

Requirements-based GUI Prototype Generation with Procedural Rules

illustrates this approach.

Assume that a requirements engineer has specified a scenario using SVOScenarioSentences [KSS+07].
Such a scenario may contain SVO sentences like User confirms selection and User selects exercise
(see Figure 4.4). Instead of having a UI designer manually create a related UI specification,
transformation rules according to T1 in Figure 4.4 may be applied. They would lead to a partial
model of an abstract UI. Applying transformation rules according to T2 would then lead to
part of a more concrete UI, i.e., a UI Prototype. Note that this prototype is not the final user
interface of the real application, but it serves the purpose of illustrating the textual scenario in
the requirements specification to users and to capture the essence [CL99]. This difference must
also be communicated to the user in order to avoid unnecessary discussions, for example on the
Look and Feel of the UI.

Now assume the other way round. Users themselves or together with a UI designer have developed
a prototypical storyboard, already using the GUI modality in its concrete syntax. This approach
facilitates their intuition of how a system to be built may be used. For developing such a piece
of software, however, a requirements specification may still be needed by (or simply useful for)
the developers. Instead of having a requirements engineer manually write such a specification,
transformation rules according to T2’ in Figure 4.4 may be applied. They would lead to a partial
model of an abstract UI, this time based on the UI Prototype. Applying transformation rules
according to T1’ would then lead to a part of the requirements specification, a scenario. Again,
the generated scenario might not be in the final version yet, but it is consistent with the UI
Prototype.

The transformation T3 can be seen as a composition of transformation rules for T1 and T2. The
transformation T3’ can be seen as a combination of the rules for T1’ and T2’.

Now the transformation rules for the approach as visualized in the example of Figure 4.4 are
described. The example consists of a ConstrainedLanguageScenario composed of the following two
SVOScenarioSentences:

1. User confirms selection.

2. User selects exercise.

The following rules implement the transformation T1:

Rule 1: Each SVOScenarioSentence whose verb implies “selection” is transformed into a Selec-
tionUIElement. Its name is the Noun in the VerbPhrase (see [KSS+07] for the definition of
VerbPhrase).

Rule 2: Each SVOScenarioSentence whose verb implies “triggering an action/event” is transformed
into a TriggerUIElement. Its name is the Noun in the VerbPhrase.

Rule 3: Each SVOScenarioSentence whose verb implies “showing information” is transformed into
a UIPresentationUnit. The name of this UIPresentationUnit is the Noun of the Object in the
VerbPhrase. Note, that these rules both require and utilize a mapping between synonyms.
We reuse this mapping from WordNet.

Rule 4: Each ConstrainedLanguageScenario is transformed into a UIStoryboard of a similar name.

46

Requirements-based GUI Prototype Generation with Procedural Rules

Figure 4.4: Overview of specifications and their transformations.

47

Requirements-based GUI Prototype Generation with Procedural Rules

Rule 5: Each SVOScenarioSentence in a ConstrainedLanguageScenario is transformed into a UIScene.
Its sceneDescription is the text of the Sentence and its sceneNumber equals the seqNumber of
that sentence. The UIScene is linked to the UIPresentationUnit corresponding to this sentence.

Rule 6: Each SVOScenarioSentence whose subject is not “System” is transformed into a UserAction.
Its source is the UIElement (other than the UIPresentationUnit) associated with the sentence.
The predecessor of this UserAction is the UIScene of the previous sentence and its successor is
the UIScene of the current sentence.

Figure 4.5: MOLA Rule R1 for T1.

Applying these rules to this example results in the UI Specification Model in the right box of
Figure 4.4. The rule execution order has no impact on the generated model.

Figure 4.5 illustrates the formalized Rule 1 for T1 in MOLA, composed of the following elements.
The outer bold rectangle symbolizes a for-each loop. The rounded rectangle inside represents

48

Requirements-based GUI Prototype Generation with Procedural Rules

the actual rule, that will be repeated for each matched element. The small boxes inside the rule
represent different kinds of classes, depending on their borderline style. When the thickness of the
border line is regular, they represent a “normal” class. A bold border lined box represents a loop
variable. A dashed lined box border represents a class that will be created by the transformation
rule. The small black circle represents the starting point of the rule. The double rounded circle
represents the end point of the rule. In particular, Rule 1 iterates over all SVOScenarioSentences.
Whenever the type of the verb is “select” and the noun is not plural, the rule matches. In this
case, a SelectionUIElement of the UI Specification Model is generated. The name attribute is set to
the name of the noun and the maximumSelectableOptions attribute is set to 1.

The following rule provides one example of transformation T2:

Rule 7: Each SelectionUIElement that only allows the selection of one Option is transformed into
a Class associated with the Combobox Stereotype. The name of the class is composed of
the name of the SelectionUIElement and “ComboBox”.

Figure 4.6 illustrates the formalized Rule 7 for T2 in MOLA. It iterates over all SelectionUIElements
where the attribute maximumSelectableOptions is set to 1 in the UI Specification and creates one
class each. The name attribute of the class is set to the SelectionUIElement name to which the suffix
“ComboBox” is added. It also creates an association with the corresponding stereotype.

Figure 4.6: MOLA Rule R7 for T2.

49

Requirements-based GUI Prototype Generation with Procedural Rules

Figure 4.7: MOLA Rule R1’ for T1’.

50

Requirements-based GUI Prototype Generation with Procedural Rules

4.3 Transformations from UI Prototypes via UI Specifications to
Requirements Specifications

This section introduces transformations for T2’ and T1’, from UI Prototypes via UI Specifications
to Requirements Specifications.

The following rule for T2’ represents the exact inverse to Rule 7 in T2:

Rule 7’: Every class with the suffix “ComboBox” in the name attribute is transformed into a
SelectionUIElement with the maximumSelectableOptions attribute set to 1.

The following rule for T1’ represents the inverse to Rule 1 in T1 (but not exactly):

Rule 1’: Every SelectionUIElement with the attribute maximumSelectableOptions set to 1 is trans-
formed into an SVOScenarioSentence. The Verb “select” is the representative of the equivalence
class for selection. The noun is the value of the name attribute of the SelectionUIElement.
Figure 4.7 illustrates the formalized Rule 1’ for T1’ in MOLA.

There is a subtle difference with the inverse transformation, since Rule 1’ always transforms to
the verb “select”. If another verb of the same type is used in the source model of T1, e.g., “choose”,
then applying T1 and subsequently T1’ will not result in the identical model. This is more of
theoretical than of practical interest, since transforming back and forth identically is not needed
for applying this approach.

4.4 Deriving Inverse Transformation Rules Automatically

Figure 4.8: Excerpt of the MOLA Metamodel.

As explained in the previous section, the inverse transformation rules are needed to be able to
transform automatically back to the Requirements Specification via UI Specification. Assume
that a UI designer has specified a set of forward transformation rules in MOLA (e.g., the rules
for T1 and T2). Instead of specifying the inverse transformation rules by hand, they may be

51

Requirements-based GUI Prototype Generation with Procedural Rules

semi-automatically generated. This may reduce the manual effort and ensure consistency with
the forward transformations.

For this purpose, I propose transformation metarules for transforming a rule to its inverse. These
rules map metamodel elements of the transformation language to other metamodel elements of
the same transformation language. So, these are mappings inside the same metamodel. Figure
4.8 shows an excerpt of the MOLA Metamodel which is used to define the Metarules described in
this paper.

Figure 4.9: Metarule R1 in MOLA.

The following metarules transform T1 into T1’ as well as T2 into T2’:

Metarule 1: The “create” class is transformed into a “loop variable” class. For example, the
created class “SelectionUIElement” in rule R1 in Figure 4.5 results in the “loop variable”
class “SelectionUIElement” in Rule R1’ shown on top in Figure 4.7. Metarule 1 is illustrated
in MOLA in Figure 4.9. It iterates over all “ClassElement” classes which have the elem-
Type set to “create”. For each “ClassElement” class with elemType set to “loop variable”, a
“ReferenceableElement” class and a “Type” class is created. The refName attribute of the
“ReferenceableElement” class refel2 is set to the value of the refName attribute of the refel1

52

Requirements-based GUI Prototype Generation with Procedural Rules

class. The name attribute of the “Type” class type2 is set to the value of the name attribute
of the type1 class. Two associations, one between Class2 and refel2, the other one between
refel2 and type2 are created.

Metarule 2: The “loop variable” class is transformed into a “create” class. For example, the
class “SVOScenarioSentence” in Rule R1 used to iterate over model elements is transformed
into the create class “SVOScenarioSentence” in Rule R1’, that is responsible for creating
corresponding classes if rule R1’ gets applied.

Metarule 3: The “normal” classes are transformed into “create” classes. For example, the other
classes in Rule R1 in Figure 4.5 that define the pattern to match, get transformed into
the create classes in Figure 4.7. Thus, the pattern will be also created during inverse
transformations.

Metarule 4: The “normal” association link is transformed into a “create” association link. For
example, the associations between the classes in Rule R1 that form the pattern to match,
get transformed into the “create” association to relate the generated pattern classes.

Metarule 5: The “for each loop” is mapped on itself, and so is the “Rule”. For example the
outer bold rectangle (for each loop) and the rounded rectangle inside (Rule) in Rule R1 in
Figure 4.5 are transformed to the outer bold rectangle and the rounded rectangle inside in
Rule R1’ in Figure 4.7.

Applying these metarules to the MOLA Rule R1 for T1 results in the rule R1’ for T1’. By applying
Metarule 1, the element type of the SelectionUIElement class is changed to “loop variable”. By
applying Metarule 2, the element type of the SVOScenarioSentence is changed to “create”. By
applying Metarule 3, the element type of the classes linked to the SVOScenarioSentence class is
changed to “create”. By applying Metarule 4, the association link type of the associations between
the classes connected to the SVOScenarioSentence is changed to “create”. By applying Metarule
5, the outer bold rectangle (for each loop) and the rounded box (rule) is mapped to itself. The
same metarules can transform the MOLA Rule R7 for T2 to the rule R7’ for T2’. The execution
order of these metarules has no impact on the result.

This approach for deriving inverse transformation rules has some limitations and poses some re-
strictions on the design of the forward transformation rules. The mapping between the source
and target model have to be bijective. Inverse transformation rules can only be derived auto-
matically, if only one class is created in the MOLA rule. Otherwise the loop variable needed by
MOLA could not be uniquely identified anymore. Further, multiple rules referring to same model
elements in their pattern lead to inverse transformation rules creating these model elements more
than once, and thus, require a merging of the created model elements. Some information in the
inverse transformation rule cannot be easily derived automatically, but can be added by heuristics.
For example, the name of the verb in Rule R1’ in Figure 4.7 cannot be automatically derived by
general metarules from the “UISelectionElement”. However, it can be set by post-processing the
generated inverse transformation rules with domain-specific heuristics.

The advantages of deriving inverse transformation rules automatically are:

• Rule changes in the forward transformation can be easily kept consistent with the backward
transformation.

• This approach reduces the manual effort of creating inverse transformation rules by hand.

53

5 Comparison between a Declarative and
a Procedural Transformation Language

This chapter compares a declarative transformation language, the discourse transformation lan-
guage (DTL) with a procedural transformation language, the MOdel transformation LAnguage
(MOLA) based on the model transformation approach features defined in [CH06]. DTL belongs
to the category of structure-driven model transformation approaches whereas MOLA belongs
to the category of graph-transformation-based approaches. DTL uses declarative rules whereas
MOLA uses procedural rules. The same transformation rules are expressed in DTL and MOLA
for comparison. Therefore some transformations in DTL, which have been used in Chapter 3 to
transform Discourse Model elements to Structural UI Model elements have also been implemented
in MOLA. Furthermore, the differences between MOLA and DTL are explained. This chapter
also contains the experiences made during the application of DTL and MOLA.

5.1 MOLA vs. DTL

This section gives a comparison between MOLA and DTL regarding the main model transfor-
mation language features. These are location determination, rule scheduling, rule organization,
source-target relationship, incrementality, directionality, and tracing. Additionally, the transfor-
mation rules specified in both languages are compared.

Location determination:

Location determination is the strategy for determining the model locations to which transforma-
tion rules are applied. We distinguish between three different kinds of location determination
strategies: deterministic, non-deterministic and interactive. The location determination strategy
used in MOLA and DTL is deterministic due to the fact that transforming one source model
twice will result in the same target model. DTL uses the standard traversal strategy depth first to
traverse the containment hierarchy in the source model. In MOLA, a local search plan generation
based algorithm [Sos10] is used to find the instances in the source model.

Rule Scheduling:

Form: In MOLA the form of rule scheduling can be classified as explicit internal scheduling
because a transformation rule can directly invoke other rules. In contrast, DTL uses implicit
scheduling. That implies that the user has no explicit control over the scheduling algorithm. The

54

Comparison between a Declarative and a Procedural Transformation Language

only way to influence the rule execution order is by specific rule design. The rule scheduling is
hidden from the user in the transformation engine.

Rule selection: In MOLA transformation rules are selected by an explicit condition. In contrast
DTL offers a conflict resolution mechanism which is based on four criteria. First the transformation
rules are selected appropriate to the device specification. Second they are ranked according to
their specialization degree, from the most specific to the least specific. In the case of more than
one rule being the most specific, these are ranked again according to the estimated space the
target pattern of the rule would occupy on the screen of a GUI. Finally, if there is still no unique
decision possible the rule with the highest priority gets applied. If rules have equal priority the
decision about which rule gets applied is not deterministic.

Rule iteration: In the literature three different kinds of rule iteration mechanisms are known.
Recursion, looping and fixpoint iteration. In MOLA rule iteration is supported by the use of a
looping construct, whereas in DTL rule iteration is not supported.

Phasing: In MOLA rule scheduling with separated phases is not supported, whereas DTL allows
to separate the transformation process in two phases, with each phase having a specific purpose,
and only certain rules can be invoked in a given phase. The first phase creates the containment
hierarchy with placeholders in the target model and the second phase replaces them according to
the content attributes and references. This is done to achieve a separation of concerns. The first
phase is responsible for the rendering of Discourse Model elements. The second phase takes care
of the rendering of the Communicative Acts content.

Rule Organization:

Both MOLA and DTL allow the packaging of rules into modules. MOLA offers a way to define a
rule based on one or more other rules. Thus it allows the reuse of rules by their logical composition
to build new rules. MOLA does not support rule inheritance. DTL does not support any reuse
mechanism. The organizational structure of rules in MOLA is independent of the target or source
language, whereas in DTL it is source oriented.

Source-Target Relationship:

In DTL it is mandatory that a new target model is created for each transformation execution
cycle. In contrast, MOLA supports the update of an existing target model. It allows an In-Place
Update as well as destructive updates. “In-Place Update” means that the original source model
can be modified by the transformation rules. “Destructive update” means that a transformation
rule can delete a model element in the target model.

Incrementality:

Incrementality is the ability to update an existing model based on changes in another model. In
DTL there is no support for Incrementality, whereas in MOLA Target Incrementality is partly
supported by the use of traceability links. Updating the target model after modifying existing
elements in the source model is not supported. However, updating the target model after new
elements have been added to the source model is supported. The preservation of user edits in the
target model is partially supported by the use of traceability links. Source Incrementality is not
supported in MOLA.

Directionality:

DTL only supports the creation of unidirectional transformations. This means that the trans-
formation rules can only be executed in one direction, e.g. from the Discourse Model to the

55

Comparison between a Declarative and a Procedural Transformation Language

Structural UI Model. MOLA, however, supports the creation of bidirectional transformations by
defining two separate complementary unidirectional rules, one for each direction.

Tracing:

Both in DTL and MOLA, the creation of traces is done by inserting traceability links manually. In
MOLA tracing information has to be created as a target element. In DTL tracing can be defined
in the property of the target elements. In DTL the storage location of the traceability links is
only the target model whereas in MOLA they can be both source and target model.

5.1.1 General Transformation Rule Comparison

Some of the transformation rules specified in DTL, which have been used in Chapter 3 to transform
the Discourse Model to the Structural UI Model, are also implemented in MOLA for comparison.
However, only the transformation rules that directly correspond to one of the DTL rules have
been implemented in MOLA. The main MOLA rule which is needed to execute the other defined
MOLA rules in a specific order is skipped because there is no corresponding DTL rule to compare
with. Therefore the main difference between the DTL and the MOLA rules is that many extra
transformation rules in MOLA have to be defined to cover the same features that the DTL engine
can offer out of the box, like conflict resolution. The name of the transformation rules compared
relate to the matching source element of the rule e.g., the rule that matches the Background RST
relation of the Discourse Model is called Background Rule.

Figure 5.1 illustrates the Background Rule (specified in Section 3.5) formalized in MOLA, com-
posed of the following elements. The outer bold rectangle symbolizes a for-each loop. The rounded
rectangle inside represents the actual rule that will be repeated for each matched element. The
small boxes inside the rule represent different kinds of classes, depending on their borderline style.
When the thickness of the border line is regular, they represent a “normal” class. A bold border
lined box represents a loop variable. A dashed lined box border represents a class that will be
created by the transformation rule. The small black circle represents the starting point of the rule.
The double rounded circle represents the end point of the rule. In particular, the Background
rule iterates over all Background RST relations. Whenever a Background relation connects a
nucleus tree and a satellite tree, the rule matches. In this case, a Root panel containing a panel
for the satellite branch and the nucleus branch is generated in the structural UI model. The Root
panel is linked to a container panel, which is the input parameter of the rule. For the root panel a
GridLayout and a Style element is created. For each nucleus and satellite panel a GridLayoutData
element are created. Next the execution is handed over to the rule responsible for the nucleus and
subsequently to the rule transforming the satellite. Both rules get the panel as a parameter, so
that they can add their results to the panel.

Figure 5.2 illustrates the Background Rule specified in DTL. The source pattern is defined in
the middle of the rule as a Background relation with a nucleus and satellite branch. The target
pattern is defined below and defines a panel composed of a Style element, GridLayout element
and two panels as placeholders for the nucleus and satellite branch. Each composed panel has
a GridLayoutData element. The Mapping between the nucleus and satellite link of the source
pattern and the subpanels of the target pattern are defined at the beginning of the rule.

Figure 5.3 illustrates the Adjacency Pair Rule specified in Section 3.5 formalized in MOLA. It
iterates over all Adjacency Pairs of the Discourse Model and creates a Panel each. It also creates
an association to the parent panel which the rule gets as a parameter.

56

Comparison between a Declarative and a Procedural Transformation Language

Figure 5.1: Background Rule specified in MOLA

Figure 5.2: Background Rule specified in DTL

57

Comparison between a Declarative and a Procedural Transformation Language

Figure 5.3: Adjacency Pair Rule specified in MOLA

Figure 5.4 illustrates the Adjacency Pair Rule specified in DTL. The source pattern defines an
Adjacency Pair. The target pattern specifies a panel that is created for each Adjacency Pair.

Figure 5.4: Adjacency Pair Rule specified in DTL

Figure 5.5 illustrates the Offer-Accept Rule specified in Section 3.5 formalized in MOLA. It iterates
over all Offers that are associated with an Accept via an Adjacency Pair. The parameter container
of type panel represents the parent panel and allows the rule to add the generated widgets to the
panel. Depending on the type of the communicative act’s content, one of two alternative rules is
selected. If the content is a kind of List (consisting of more than one element) a ListWidget and
a Button are generated. In all other cases only a Button is generated in the Structural UI Model.

Figure 5.6 illustrates the Offer-Accept Rule specified in DTL. The source pattern matches only
Offer-Accept Adjacency Pairs which have a multiple cardinality defined for the content of the
Offer Communicative Act. The target pattern creates a ListWidget with a button.

Domain:

A Domain is the part of a rule responsible for accessing either the source or the target model.
It has an associated domain language specification that describes the possible structures of the
models for that domain. The domain language both in MOLA and DTL is the Meta Object
Facility (MOF). In a DTL rule, the in-domain (source) is specified with the elements contained
in the Discourse element illustrated in the upper part of the rule in Figure 5.2. The out-domain
(target) is specified with the elements contained in the lower compartment of the rule illustrated
in the lower part of Figure 5.2. In this rule the Lower compartment starts with the element
“Panel Background”. In a MOLA rule, as illustrated in Figure 5.1, all elements with a regular and

58

Comparison between a Declarative and a Procedural Transformation Language

Figure 5.5: Offer-Accept Rule specified in MOLA

Figure 5.6: Offer-Accept Rule specified in DTL

59

Comparison between a Declarative and a Procedural Transformation Language

bold line strength belong to the in-domain, whereas all elements with a dashed line belong to the
out-domain. Thus, in a MOLA rule there is no local separation between the elements of the in-
domain and the out-domain. In contrast in a DTL rule, the in-domain and out-domain elements
are placed in separate compartments. MOLA and DTL rules use graphs to present the structure of
their source and target patterns. Both represent their patterns with a concrete graphical syntax
illustrated in Figure 5.1 and Figure 5.2 respectively. MOLA rules have a procedural language
paradigm whereas DTL rules are based on logic programming. Values are specified in MOLA and
DTL rules through constraints. MOLA rules create elements explicitly but DTL rules implicitly
by the framework. MOLA rules are typed semantically as well as DTL rules.

Syntactic Separation:

DTL rules have a left hand side (LHS) operating on the source model separated from the right
hand side (RHS) operating on the target model. In Figure 5.2 the separation between the LHS,
contained in the Discourse element and the RHS, starting with the “Panel Background” is visible.
In contrast, MOLA rules have no syntactic separation. In Figure 5.6 it can be seen that elements
that are created (dashed line) belonging to the target model are not separated from elements from
the source model.

Multidirectionality:

MOLA and DTL rules do not allow the execution in both directions. Their in-domain is clearly sep-
arated from the out-domain whereas rules supporting multidirectionality are defined over in/out-
domains.

Application condition:

Transformation rules expressed in DTL can have constraints that serve as an application condition.
This condition must return “true” in order for the rule to be executed. Transformation rules in
MOLA do not support an application condition.

Intermediate structure:

The execution of MOLA and DTL rules does not require the creation of intermediate structures
which are not part of the models being transformed.

Parameterization:

Control parameters, generics and higher-order rules are neither supported by MOLA nor by DTL
rules.

Reflection and Aspects:

Reflective access to transformation rules during the execution of transformations is not supported
in MOLA and DTL. The definition of aspects to express concerns that crosscut several rules are
not supported in MOLA and DTL.

5.1.2 Concrete Rule Example Comparison

Comparing the Background rule specified in MOLA in Figure 5.1 with the Background rule
specified in DTL in Figure 5.2, there are two difference. In the Background rule specified in
MOLA an input parameter that serves as a container for the created elements has to be specified
whereas in DTL mappings have to be defined to map the link satellite and the link nucleus to
dedicated panels.

60

Comparison between a Declarative and a Procedural Transformation Language

Comparing the Adjacency Pair rule specified in MOLA in Figure 5.3 with the Adjacency Pair rule
specified in DTL in Figure 5.4 there is only one difference. The Adjacency Pair rule in MOLA
additionally needs a container panel as a parameter where the created panel can be inserted.

Comparing the Offer-Accept rule specified in MOLA in Figure 5.5 with the Offer-Accept rule
specified in DTL in Figure 5.6 there are some differences. Like the Adjacency Pair rule in MOLA,
the Offer-Accept rule in MOLA additionally needs a container panel as a parameter where the
created panel can be inserted. In the Offer-Accept rule in MOLA a condition is modeled to decide
whether only a button should be added to a panel or a ListWidget containing a button. The
Offer-Accept rule specified in DTL in Figure 5.6 only covers the ListWidget containing a button
case. An equivalent second rule is needed in which the cardinality of the content of the Offer is
set to “one”. In contrast to the Offer-Accept rule specified in MOLA in Figure 5.5, the decision
does not have to be modeled explicitly. The framework of the transformation language takes care
of it.

The most important difference between the three rules in DTL and in MOLA is that for the
execution of the MOLA rules an additional MOLA rule is needed that defines the execution
order. In DTL the execution order is handled by the framework automatically.

5.1.3 Personal Experience with DTL and MOLA

The personal experience made is that writing rules in MOLA is connected with more effort for
the designer than in DTL. This is due to the fact that the designer has to keep the execution
order in mind when designing the rules whereas in DTL the designer can fully concentrate on
the transformation rule design itself. Conditions have to be explicitly modeled in MOLA whereas
in DTL they are handled by the framework. Many features, e.g. conflict resolution have to
be implemented in MOLA in form of additional rules, which makes the design task much more
complicated. DTL however, hides the complexity much better from the user by supporting many
features out of the box and might, therefore, be even suitable for the end user. However, MOLA
gives more influence on the transformation process and can, therefore, be more suitable for expert
users.

5.2 Differences between MOLA and DTL

• MOLA provides graphical representation of transformations:

MOLA provides an easily readable graphical transformation language by combining tradi-
tional structured programming in a graphical form (a sort of “structured flowcharts”) with
pattern-based rules. This is achieved by introducing a graphical loop concept, augmented
by an explicit loop variable. The loop elements can easily be combined with rule patterns.
Other structured control elements are introduced in a similar way.

• MOLA allows explicit control of rule scheduling:

A consequence of the procedural nature of MOLA is the explicit control of rule scheduling.
The user can explicitly decide which rule should be executed and when, by defining the
concatenation order. Thus expert users have full control of the rule scheduling and can
design their rules specifically for their desired rule execution sequence.

61

Comparison between a Declarative and a Procedural Transformation Language

• DTL allows multiple rules to match the same source pattern:

In DTL one source pattern can be matched by multiple rules. Therefore it has to provide
a conflict resolution mechanism based on the device specification, the rule specialization,
screen space and priority. In model-driven GUI development this feature is of major im-
portance because one abstract concept can be realized on the GUI in different ways. Thus
DTL is specially tailored for the GUI development based on the Discourse and Structural
UI Model and provides all necessary features.

• MOLA is suitable for general purpose transformations:

In contrast to DTL, MOLA is not designed for any specific transformation purpose. There-
fore it can be used to transform any source model to any target model. If specific features
are needed, they have to be implemented in the form of MOLA rules.

• DTL handles the rule execution order automatically:

In DTL the rule execution order is handled automatically by the framework. Therefore the
designer can fully concentrate on writing the transformation rules. Rules can be designed
independently of other rules. This makes rule design much more convenient for the designer
by reducing the cognitive load. This is a key benefit of any declarative transformation
language and it reduces the effort for the rule creation tremendously.

5.3 Comparison Summary

This section gives a summary of the comparison between the transformation languages MOLA and
DTL. Therefore, two tables are presented which show the supported features. Table 5.1 illustrates
the comparison between the supported transformation language features of MOLA and DTL. The
boxes filled with a cross symbolize that this feature is supported by the particular transformation
language. Table 5.2 illustrates the transformation rule features supported from MOLA and DTL.

DTL is a declarative transformation language specifically developed for transforming Discourse
Models to Structural UI Models. The characteristic feature is multiple rule matching, which is
of major importance for GUI development. Thus it allows one source pattern to be associated
with different target patterns, more specifically Structural UI Model parts. It also provides a
sophisticated conflict resolution mechanism tailored specifically to GUI development.

MOLA is a procedural transformation language, which is not restricted to a specific source or
target metamodel. The characteristic feature is the graphical representation of the transformation
rules which help the designer to define rules. It allows the explicit control of the rule scheduling
due to the procedural nature of the transformation language.

In contrast to DTL, which is specifically suitable for GUI generation, MOLA is suitable for any
model-to-model transformation purpose. However MOLA is better suited for expert users because
it allows them to have more influence on the transformation process, whereas DTL is more end
user friendly because it allows the designer to focus on the development of the transformation
rules.

62

Comparison between a Declarative and a Procedural Transformation Language

MOLA DTL

LOCATION/DETERMINATION
deterministic X X

RULE SCHEDULING
Form:

implicit X

explicit internal X

Rule Selection:

explicit condition X

conflict resolution X

Rule Iteration

looping X

Phasing X

RULE ORGANISATION
modalarity mechanism X X

Reuse Mechanism:

logical composition X

Organisational Structures

source oriented X

independent X

SOURCE TARGET RELATIONSHIP
new target X

existing target > inplace or destructive update X

INCREMENTALITY
target incrementality X

preservation of user edit in target X

DIRECTIONALITY
unidirectional X

multidirectional X

TRACING

manual creation X X

Storage Location:

target model X X

source model X

Table 5.1: Transformation language feature comparison between MOLA and DTL

63

Comparison between a Declarative and a Procedural Transformation Language

MOLA DTL

DOMAIN

Domain Language

Structural UI-Model X

Discourse Model X

Any Model X

Static Mode

in/out X

in X

out X

Body

patterns X X

 - stucture graphs X X

 - concrete graphical syntax X X

logic

 - language paradime

 - logic X

 - procedual X

 - value specification

 - constraint X X

 - element creation

 - explicit X X

Typing

semantically typed X X

SYNTACTIC SEPERATION X X

MULTIDIRECTIONALITY X

APPLICATION CONDITION X

Table 5.2: Transformation rule feature comparison between MOLA and DTL

64

6 Feasibility Study CommRob: GUI
Generation for a Given Finger-based
Touchscreen GUI Design

This chapter presents a feasibility study, which shows how the discourse-based WIMP UI gener-
ation approach was used to generate the GUI for a given finger-based touchscreen GUI design.
In particular it shows the tailoring of the transformations between Discourse Models and Struc-
tural UI Models for a given finger-based touchscreen GUI design. Therefore, the correspondent’s
between the Discourse Model and the resulting GUI is shown. The main challenges that had to
be dealt with are: Adapting the layout according to a given design, presenting content according
to a given design and customizing style according to a given design. In the CommRob project,
the discourse-based WIMP UI generation approach, presented in Chapter 3, was used to generate
the GUI for the finger-based touchscreen of a Shopping Trolley. The Discourse Models specified
the communication between the Trolley and the user. This chapter contains some discourse mod-
els of the CommRob project and the resulting GUI [BEF+10, EFK+10a], the CommRob GUI
generation challenges as well as lessons learned.

6.1 The CommRob Discourse Models and the Corresponding GUI

The GUI for the CommRob Shopping Trolley has been developed based on a given finger-based
touchscreen GUI design. We tried to capture the interaction using our Discourse Models. Sub-
sequently, we used these Discourse Models to automatically generate large parts of the GUI. To
improve the usability of the GUI, we added additional information to the transformation process
(e.g., style and layout) and we included manually written components.

Figure 6.1 shows the start screen of the CommRob GUI. It is composed of five areas. The Shopping
Discourse (1), the Status Area (2), the Map Widget (3), the Navigation Widget (4) and the Help
Area.

The GUI that has been generated based on the approach presented in Chapter 3 is displayed in
Area 1 of Figure 6.1. This area is the only finger-based touchscreen GUI part which is generated
with the transformataion rules presented in Chapter 3 and contains all elements that allow the
user to interact with the application. All other components on the screen are not generated from
Discourse Models and are only used to display information for the user. The most universal instru-
ment to do so offers Area 2, the so-called Status Area. It is used to inform the user about different

65

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

types of events. Such events reflect the status of the application (e.g., “Managing ShoppingList”),
they contain information from the Trolley layer (e.g., “bumper hit”) or they convey information
from another Trolley (e.g., “Your partner is going to checkout”). The MapWidget displayed in
Area 3 shows a map of the supermarket and informs the user about the Trolley’s actual position.
The NavigationWidget in Area 4 is used to inform the user in which direction the robot is about
to move. Area 5 displays information that should help the user during his shopping experience.
This area is updated according to what is displayed in Area 1. All other widgets that can be
seen in Figure 6.1 (i.e., the clock, the mute button and the exit button) are not related to the
application logic and, therefore, not to any discourse. Thus they are also not relevant for the
transformations like area 2,3,4 and 5.

Figure 6.1: CommRob Start Screen

Figure 6.2 illustrates the root of the shopping Discourse Model. This model specifies the commu-
nication between two communication parties, the Trolley and the Customer. They are represented
in the diagram with actor symbols in the upper left. The shopping Discourse Model is used to
generate the GUI presented in the Shopping Discourse (1) Area in Figure 6.1. The discourse starts
with the alternative of two requests either to Start shopping or to start shopping with the help of
the walking aid [EKA+11]. The left button is generated to send the Request to Start Communica-
tive Act and the right button to send the Request to Start with Walking Aid. The Alternative
relation results in the parallel presentation of the possibility to send each of the requests. After
the Trolley has been successfully attached, the second nucleus branch of the sequence becomes
active. The Tree branch of the lower IfUntil is executed if the Trolley is not moving whereas
the Then branch is executed if the Trolley is moving. The Else branch becomes active when the
payment is in progress. Finally, when the user completed the payment, the Then branch of the
upper IfUntil becomes active and the Informing that the Trolley has returned gets uttered.

Figure 6.3 illustrates the subpart of the shopping Discourse Model which is linked to the Tree
branch of the lower IfUntil in Figure 6.2. It specifies all the interaction when the Trolley is not

66

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.2: Shopping Discourse Root

67

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.3: Shopping Discourse – Robot is NOT MOVING branch

68

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

moving. The user has the alternative to send a Request for managing the shopping list, to return
the Trolley, to continue the suspended task, to go to the checkout counter, to guide her to a
selected product, to put a product into the Trolley, to select a product from the shopping list
as the next destination and to link or unlink with another Trolley. The resulting GUI screen is
illustrated in Figure 6.4. The area marked with the number 4 results from the lower Alternative
subtree. The area marked with the number 1 results from the request to manage shopping list on
the left. The area marked with number 2 results from the request to continue in the middle. The
area marked with number 3 results from the request to return Trolley. The Condition relation
linked to the upper alternative is used to restrict the utterance of the Request – Accept to a
condition.

An IfUntil whose Tree branch has no condition is, in fact, an endless loop, which can only be
ended by one of its parent relations. The IfUntil relation which is linked to both alternatives
in the middle of the diagram is needed to loop over the alternative linked to the Tree branch.
The loop stops if the condition of the Tree branch of the root IfUntil is not fulfilled anymore.
More precisely, if the robot leaves the NOT MOVING state (i.e., the robot starts moving or the
payment is in progress), because this implies that the repeat condition of the Tree branch is not
fulfilled anymore.

The nucleus branch of a result relation is executed as soon as its condition is fulfilled. The result
relation in Figure 6.3 is used to inform the user about events coming from the linked Trolley.

The Request – Accept adjacency pair for putting a product into the Trolley is not rendered on the
GUI. This adjacency pair is rendered by the bar code reader and sent when a product is scanned.

Figure 6.5 illustrates the subpart of the shopping discourse which models the interaction when the
Trolley is moving. It is linked to the Then branch of the lower IfUntil relation in Figure 6.2. The
Trolley has the alternative either to inform about the shopping list, destination list and the In
Cart List or to inform about the updated task and status. The user has the alternative to request
the Trolley to stop or to inform that she has put a product into the Trolley. This Informing is
also not rendered on the GUI but by the barcode reader. This signifies that scanning a product
is possible while the robot is moving as well as while it is not moving.

Figure 6.6 illustrates the inserted sequence for managing the shopping list. It is embedded in the
adjacency pair Request – Accept to manage the shopping list represented in the left of Figure 6.3.
The user has the alternative either to select one product category and then to elaborate on it by
selecting a product of the selected category, or to select a product to remove from the shopping
list, or to request the finishing of the shopping list management. The IfUntil is used to loop over
the alternative, until the customer requests to finish the inserted sequence. The Result relation is
used to model the events coming from the linked Trolley.

Figure 6.7 illustrates the inserted sequence for linking to another Trolley. It is embedded in the
adjacency pair Request – Accept to link to another Trolley represented in the right of Figure 6.3.
The user has the alternative to either select one robot to link or to request the cancellation for
linking to another Trolley.

6.2 The CommRob GUI Generation Challenge

One of the challenges in the CommRob project was to fully-automatically generate part of the GUI
for a finger-based touchscreen according to a given GUI design. This means that the discourse-

69

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.4: CommRob screen with customized layout

70

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.5: Shopping Discourse – Robot is MOVING branch

71

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.6: Shopping Discourse – Inserted Sequence Manage Shopping List

72

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.7: Shopping Discourse – Inserted Sequence Link To Other Robot

based WIMP UI generation approach presented in Chapter 3 had to be configured specifically to
achieve the given usability and design requirements.

During the design process of transformation rules, which are supposed to create part of the given
finger-based touchscreen GUI design, it sometimes happened that the wrong transformation rule
was applied. This was caused by a preexisting rule for finger-based touchscreen having exactly the
same source pattern but creating a different target pattern (not the given finger-based touchscreen
GUI design). In this case the designer has two possibilities to enforce the selection of the desired
rule that creates part of the given finger-based touchscreen GUI design. The first possibility is to
increase the priority of the desired rule. The second is to make the rule more specific by matching
the content. We decided to make the rule discourse specific by matching the content because the
given UI design was CommRob specific.

Transformation rule development was a difficult and error-prone task to do. After creating a
transformation rule it had to be executed to detect possible errors. Some errors could be detected
during the transformation process but others only showed up during runtime. Such a runtime error
often occurred when a widget in the target pattern of the rule did not trace to the correct Com-
municative Act in the source pattern. Thus, during runtime the content could not be displayed.
Achieving the state of correctly specified transformation rules was very time consuming.

In CommRob, transformation rules did not always have to be created from scratch. Many trans-
formation rules were of quite similar nature. Therefore, in many cases it was reasonable to create
a copy of an existing rule and to start editing it until the desired rule was achieved. This helped
to save a lot of time and effort.

The design of transformation rules in CommRob requires imagination to picture the resulting UI
part. The target pattern was specified in a tree editor. Thus, the only way to estimate the impact
of a newly designed rule was to execute the transformation process and start the CommRob GUI.
The process of editing a rule and verifying the result is time intensive.

In CommRob the GUI generation process had to deal with preexisting requirements on what the
GUI should look like to achieve reasonable usability. Thus, it had to be defined explicitly how
certain pieces of information should be rendered and the layout of some parts of the GUI had
to be influenced. As the UI of the CommRob Trolley was multi-modal there were some parts

73

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

of the interaction model that were not relevant for the GUI modality at all, so those parts were
prevented from being rendered for this finger-based touchscreen GUI [EFK10b, EKKF10].

CommRob-specific rules were introduced to achieve these goals. These rules either match explic-
itly content objects from the CommRob Domain-of-Discourse model (content-rendering rules), or
constellations from the CommRob specific Discourse Model (layout rules and rules that prevent
some parts from being rendered).

6.2.1 Adapting Layout According to a Given Design

This section illustrates how customized transformation rules and automatic layouting [Lei10] have
been combined to achieve the required GUI layout.

The UI generation process with transformation rules allows the layouting of the UI only by spec-
ifying the layout separately for the target pattern of each rule. This means the UI can only be
layouted in subparts. During the transformation process, these subparts are connected according
to the elements of the Discourse Model. All layout data that is still missing after the Structural
UI Model has been completed, is calculated automatically by a layout module [Lei10]. In most
cases even the layouting of the subparts is hard to achieve because some of the target pattern ele-
ments are replaced by content rendering rules in a second step. Another reason is that n-nucleus
relations can have n branches. The number of branches cannot be considered in the layouting of
the target pattern of the transformation rule because it is not known during the design time of
the generic transformation rules. Therefore, specific CommRob layouting rules had to be speci-
fied to satisfy the predesigned GUI layouting requirements. They are tailored to the CommRob
Shopping Discourse Model and therefore, only can be created after the Discourse Model has been
completed.

The key idea of the CommRob layouting rules can be explained with the following example:

Figure 6.8 illustrates an excerpt of the CommRob shopping discourse. It shows an Alternative
relation with four nucleus branches. Two branches are each composed of a Request-Accept ad-
jacency pair, one of a Condition relation and one of a Sequence relation. This discourse subtree
is matched by the CommRob layouting rule illustrated in Figure 6.9. The source pattern of the
rule is equivalent to the discourse tree in Figure 6.8. It is illustrated in the transformation rule
embedded in the element “Discourse”. The adjacency pairs in the rule match the exact name of
the adjacency pair in the CommRob Discourse Model. The Target pattern is embedded in the
“Panel” element “Alternative1” and is composed of 4 Panels. Each Panel serves as a container for
the transformation result of a specific nucleus branch of the Alternative relation. The Mapping
element in the rule is used to assign a specific nucleus branch to a specific panel. For example,
the left-most nucleus branch of the Alternative relation in Figure 6.8 is assigned to the panel
“ManageShoppingList”.

Figure 6.4 illustrates the generated part of the CommRob touchscreen GUI with customized
layout, which is embedded in the manually created part of the GUI. One of the rules needed to
achieve this layout is the CommRob layouting rule in Figure 6.9. It arranges the Manage Shopping
List button in Panel 1, the Continue button in Panel 2, Return Trolley button in Panel 3 and the
rest in Panel 4, illustrated with the numbers in the rounded boxes in Figure 6.4. The Manage
ShoppingList button on the left, the Continue button in the middle and the Return trolley button
on the right of the upper row. In the second row the rest of the UI is placed.

74

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.8: CommRob Shopping Discourse Extract

Figure 6.9: CommRob Layout Rendering Rule

75

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

In contrast to Figure 6.4, the fully automatically layouted CommRob UI would look like in Figure
6.10. For this generation no CommRob-specific layouting rules were used. The automatic layout-
ing results in the placement of the Return Trolley button below the Manage Shopping List button
instead of being placed right next to the Continue button. This is due to the consideration of the
predefined screen proportion of 2:3. The automatic layouting can only take information from the
Discourse Model into account, like the relation type. The Alternative relation conveys no layout
information and, therefore, only the size of the generated Structural UI parts can be considered
for layouting.

6.2.2 Presenting Content According to a Given Design

The CommRob content-rendering rules are designed to present content from the CommRob Do-
main of Discourse Model suitable for a finger-based touchscreen in a predefined way, for example,
in a specific order of attributes or different states as icons. Figure 6.11 illustrates the CommRob
content-rendering rule for the shopping list. It matches the Closed Question – Answer adjacency
pair with a ShoppingList as content of the CommRob Discourse Model in Figure 6.3. It creates
a panel composed of three labels and a ListWidget. The ListWidget itself is composed of two
picture boxes, one to illustrate the picture and one to illustrate the state and a label to represent
the name.

Figure 6.12 illustrates the resulting UI part of the CommRob discourse after applying the rule in
Figure 6.11. A list entry is represented by a row with three columns. The left column is occupied
with the picture of the product, the middle column is filled with the name of the product and the
right column is the icon for the state.

6.2.3 Customising Style According to a Given Design

The style of each widget of a generated GUI can be defined in a Cascading Style Sheet (CSS). This
mechanism was used to define a sound for each click on a button or a list. This gives additional
feedback to the user about his action. Moreover, the CSS is used to set icons either for widgets
(e.g., a button) or to represent enumeration values. Icons on buttons help the user to associate a
meaning and to distinguish them more easily. Thus, they help to ease the use of the GUI and to
improve its usability.

The mapping from enumeration values to icons is used to represent the status of a product. With
one look the user can tell whether the product is in his cart, if he went there but did not take
it, or if he still has to go there. Different colors were used for the user’s Trolley and the partner
Trolley. Thus it becomes easy for the user to see which products are in which Trolley.

6.3 Lessons Learned

During the application of the approach presented in Chapter 3 in the CommRob project, several
issues showed up. In this section we generalize from the specific case at hand during the generation
of the GUI for a given finger-based touchscreen GUI design.

76

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.10: CommRob screen with fully automatic layout

77

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

Figure 6.11: CommRob Content-Rendering Rule for ShoppingList

Figure 6.12: CommRob ShoppingList

78

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

• This approach allows the development of GUIs based on a given GUI design:
During the CommRob project, a concrete finger-based touchscreen GUI design was prede-
termined. Therefore, the UI generation process presented in Chapter 3 had to specifically
take care of the UI by the definition of new specific transformation rules. Those were used
to adapt the layout according to a given design, to present the content according to a given
design and to prohibit the transformation of certain discourse elements. However, the GUI
generation for a given GUI design meant a lot of additional effort and is, therefore, better
suited for a semi-automatic approach which allows to modify the generation of the GUI
more easily.

• A given GUI design can be achieved with specific transformation rules: During
the CommRob project, it turned out that the transformation rules developed so far where
not suitable for the Commrob GUI. The Commrob UI was used with a touchscreen which
had to be used by finger and, therefore, needed to take coarse pointing granularity into
account. Additionally to the transformation rules for desktop (fine pointing granularity)
transformation rules for finger-based touchscreen (coarse pointing granularity) had to be
developed to meet the given GUI design. Specific transformation rules had to be developed
to adapt the layout according to the given design.

• Letting the designer choose which rule is applied avoids rule mismatches: In
many cases, there exist different UI constructs for the same discourse element which cannot
be distinguished automatically by the tool. Therefore to avoid the rule mismatch that
happened in CommRob, the only way to achieve satisfying results for the end user is to let
her decide which of the possible constructs she wants to have. This means that during the
GUI generation process the designer should be able to choose which of the matching rules
she wants to apply. Therefore, the target pattern of each matching rule should be visualized
graphically so the designer can choose the appealing one.

• Automatic layouting is not enough (the possibility to customize the layout effi-
ciently is needed): This UI generation process allows the layouting of the target pattern
of each rule as well as automatic layouting that places the resulting panels according to the
available space. If the UI design defines the position of a panel in a different way than the
automatic layouting is able to produce, then discourse-specific layouting rules as used in
CommRob are needed to place a panel to a specific position on the screen. More efficiently,
instead of specifying discourse-specific layouting rules, the layout can be customized to the
needs of the user with a graphical Screen Model [Ran10] editor.

• The GUI transformation process should be modality aware (not-to-render rules):
During the CommRob project the designed discourse models also included communicative
acts which were not suitable to be rendered for the GUI modality. Therefore, specific trans-
formation rules had to be designed to prohibit these communicative acts to be transformed
by the GUI generation process. Those rules would not be necessary anymore if the GUI
transformation process was modality aware. The transformation process should only con-
sider those communicative acts which have been tagged as supported for the GUI modality
[EKKF10].

• Rule metamodel compliance check would help to develop rules more efficiently:
During the CommRob project, a lot of transformation rules had to be developed. Creating
transformation rules manually has a high potential for errors. For example, if a widget in
the target pattern does not trace to the correct communicative act in the source pattern

79

Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design

then the content cannot be displayed. Such errors might be detected after executing the
transformation process but in the worst case only during runtime. A rule metamodel com-
pliance check framework [Sch10] that checks the rules for such errors constantly during the
development makes rule design more efficient.

• Creating new rules based on existing ones by rule specialization: Many transfor-
mation rules used in the CommRob project are similar. Having to copy and edit a rule each
time a new rule with a slightly different source or target pattern is desired is difficult to
maintain because the slightly difference between rules is hard to find. Rule specialization
allows the creation of new rules based on existing ones by only additionally specifying the
difference. In contrast to copy and edit it lets the designer focus on the difference between
the rules.

• Visual representation of the rendering rules would help the designer to customize
the GUI: When designing new transformation rules during the CommRob project the
designer still needed imagination to picture the resulting UI part, because there was no
visual representation of the target pattern of the transformation rule. Therefore, a visual
representation of the target pattern of the transformation rule would help the designer to
predict the impact in the resulting GUI and enable him to make better rule design decisions.

80

7 Related Work

This chapter gives an overview of the state of the art related to this work. It presents the existing
approaches in the field of semi-automatic GUI generation. The most promising approaches are
explained in more detail. First we explain the UI generation with the OlivaNova model execution
system of Oscar Pastor [PEPA08]. Second we explain the generation of UIs based on task models
of Fabio Paterno [MPS04]. Third we present the UsiXML-based MDA-compliant Environment
for developing UIs of Jean Vanderdonckt [Van05]. Finally, other related approaches are covered.

7.1 User interface Generation with the OlivaNova Model Execu-
tion System

This section explains the user interface generation approach with the OlivaNova model execution
system. Figure 7.1 illustrates it compared to the models in the MDA approach. The MDA
approach proposes the definition of the system with an abstract model called CIM illustrated in
the top left of Figure 7.1. It is located on the same abstraction level as the Functional Requirements
and Interaction Requirements Model of the OO-Method [PEPA08]. The Functional Requirements
Model is composed of four models. These are the Mission Statement, the Function Refinement
Tree, the Use-Case Model and the Sequence Diagram. As illustrated, the Sequence Diagram
corresponds to the PIM of the MDA. The Interaction Requirements Model is composed of two
models, the UI Sketches and the Concur Task Tree (CTT) Model. The UI Sketches correspond,
as illustrated in the diagram, to the PIM. The dashed line in Figure 7.1 shows that the Sequence
Diagram and the UI Sketches as well as the Conceptual Model correspond to the PIM. Following
the MDA approach, the CIM is transformed, into a more concrete model, the PIM. It corresponds
to the Conceptual Model of the OO-Method, which is composed of the Object Model, the Dynamic
Model, the Functional Model and the Presentation Model. The Object Model represents the object
structure and its static interactions. The Dynamic Model defines the interactions between the
objects. The Functional Model specifies how events change the object states. The Presentation
Model represents the interaction between the system and the user. As already mentioned, the UI
Sketches and the Sequence Diagram of the OO-Method correspond to the PIM of the MDA. The
next step in the MDA approach transforms the PIM to the PSM, which is specific to a certain
platform. It corresponds to the Compilation Model of the OO-Method. The last step in the MDA
approach transforms the PSM to the Code Model. It corresponds to the Source Code Model in
the OO-Method, which is composed of three layers: the Interface Layer, the Business Layer and
the Persistence Layer.

81

Related Work

Figure 7.1: The software generation process of the OO-Method (copied from [PEPA08])

Figure 7.2 illustrates the derivation process in the OO-Method. Derivation means the creation plus
the automatic mapping (transformation) of one model to another one. The process starts either
with the specification of the Sequence Diagram or the definition of Use Case Templates. Then
the UI Sketches are created manually according to the previously defined Use Case Templates or
Sequence Diagrams. The corresponding Task Tree is automatically generated. The Object Model
can be derived either from the Sequence Diagram or the Use Case Templates. The Presentation
Model is derived form the Task Tree [EPP06]. Then the Object Model and the Presentation
Model are manually related to each other. However, it is planned to achieve this mapping auto-
matically. The Dynamic Model and the Functional Model have to be created manually according
to the Functional Requirements Model. When all the models of the Conceptual Model have been
specified, the application is generated automatically by a model compiler.

The models used in the approach presented in Chapter 3 of this work can also be mapped to the
MDA models. The Discourse Model corresponds to the CIM and is directly transformed to the
Structural UI model, which corresponds to the PSM. There is no PIM in this approach. The Code
Model corresponds to the source code generated out of the Structural UI for a particular target
platform.

7.2 Generation of UIs based on Task Models

Figure 7.3 illustrates the UI generation approach based on Task Models. It starts with the
specification of a task model which is platform independent. The Task Model has to be manually
annotated for each platform to a System Task Model which is platform specific. For each System
task model an Abstract UI model is generated which is also platform specific. Subsequently, the
Abstract UI model for each platform is transformed to a Concrete UI model which is platform
specific as well. Finally the Concrete UI model is used to generate the UI source code for the
particular platform. For more detailed information about this approach see [MPS04].

82

Related Work

Figure 7.2: OOMethod derivation (copied from [PEPA08])

Figure 7.3: One model many interfaces approach based on task models (copied from [MPS04])

83

Related Work

An advanced approach to specifying multi-device user interfaces based on Task Models instead
of Discourse Models is presented in [MPS04]. Its basic approach is to start modeling tasks and
to generate user interfaces for diverse devices according to specific device characteristics. In
contrast to the discourse-based UI generation approach, some of the transformations between
models are done semi-automatically or manually. The transformations are implicitly coded in
the system, there is no genuine transformation engine like ATL, ATOMS3 or MOLA. A major
difference between Task Models and Discourse Models is that task models express only temporal
dependencies whereas discourse models specify causal dependencies, too. The semantic mapping
of task models to dialog models based on UML State Machines is explained in [dBC07]. A similar
mapping from Discourse Models to UML State Machines in the course of behavior generation is
presented in [PFA+09]. Additionally an algorithm is presented to derive the presentation units of
a UI. Furthermore, instead of tasks the approach presented in Chapter 3 of this work understands
user interfaces as communication with intentions between a user and a machine.

Paterno et al. [PSS09] describe a method and a model-based language called MARIA for creating
interactive applications based on pre-existing functionalities in multi-device contexts. It supports
the generation of UIs for accessing multiple services. It allows both the specification of service-
to-service interaction as well as the approach presented in Chapter 3 of this work. The MARIA
model has to be extended for UI generation with annotations, whereas the discourse-based GUI
generation approach does not need any modifications for UI generation. The discourse models
are capable of expressing service-to-service communication as well as serving as a UI generation
starting point per se. Discourse models support the explicit expression of the intention of a
communication by the use of communicative acts.

The differences between this approach and the discourse-based UI generation from Chapter 3 are:

• Platform-specific starting point for UI generation: To enable the UI generation the
platform-independent Task model has to be refined to a platform-specific System task model.
This approach starts the UI generation from a platform-specific model (System task model)
which has a lower abstraction level than the starting point of the approach presented in
Chapter 3 of this work. In contrast, the approach presented in Chapter 3 of this dissertation
starts the UI generation from a CIM, the Discourse Model, which is platform independent.

• Approach has no MDA compliance: As illustrated in Figure 7.3, all models involved
in the generation process are platform-specific. The Abstract UI model is according to the
MDA a platform-independent model, however in this approach it is platform-specific. In
contrast, the discourse model based UI generation approach is MDA compliant. However,
the UI generation skips the PIM and directly transforms the CIM to the PSM.

• Tasks can have only temporal relations: The CTT notation only allows the connection
of tasks in a temporal manner. Semantical relations that might exist are not captured in the
model. Therefore, this semantical information is not available during the GUI generation
process. In comparison, Discourse Models also relate adjacency pairs according to their
semantic relationship. This enables the discourse-based UI generation process to layout the
GUI according to the semantic relation. The Background relation, for example, which is
explained in Chapter 3, expresses that the satellite-branch conveys background information
related to the nucleus-branch. In this case the nucleus-branch is rendered on the right and
the satellite-branch on the left).

84

Related Work

In contrast to this approach, the approach presented in Chapter 4 of this doctoral dissertation does
not start from high-level task models, but from detailed requirements specifications. Alternatively,
it can start from concrete UIs and lead automatically to artifacts in a requirement’s specification.

7.3 UsiXML-based MDA-compliant Environment for Developing
UIs

This section gives an overview of the UsiXML-based MDA-compliant Environment for developing
UIs. UsiXML is a User Interface Description Language (UIDL), which is used to specify UI models.
Figure 7.4 illustrates the UsiXML-based UI generation process as well as the supporting tools.
Starting with the specification of UsiXML-based task and domain models, graph transformations
are used to generate an Abstract User Interface in UsiXML. The next step transforms the AUI
into a Concrete User Interface in UsiXML also by the use of graph transformations. The reason
why graph transformations have to be used is, that the transformation metamodel incorporates
classes which are strongly related to the structure of graphs. In the final step, the CUI is rendered
to a FUI. In this approach all the models are specified in UsiXML, even the graph transformations.
In contrast, the approach presented in Chapter 3 of this work uses a different language for each
model.

The most important UsiXML tools supporting this UI generation approach are:

• TransformiXML [LV04b, LV04a]: TransformiXML is a tool for the application of model-to-
model transformations. A UsiXML compliant specification is transformed by the application
of transformation rules into another UsiXML compliant specification. Transformations are
possible between the three top development stages of the Cameleon Reference Framework
to support forward and reverse engineering. The transformation rules are expressed in
UsiXML. The theoretical background to execute and express transformations is based on
graph grammars.

• IdealXML [MLJ06]: IdealXML provides a graphical editor for the task model, the domain
model, and the AUI model. It also allows the transformation between this models by
calling TransformiXML. It is a pattern-based environment which allows to store, edit and
manipulate interaction patterns and to reuse them in UI development.

• KnowiXML [FFS+04]: KnowiXML is a Knowledge-based System (KBS) that facilitates
during the generation of AUIs the application of models and the allocation of appropriate
visual elements. The theoretical background for generating the AUIs is based on problem
solving strategies from Artificial Intelligence (AI). The knowledge of the interface designer
is encoded in KnowiXML and modifies UI specifications through the use of a User Interface
Description Language (UIDL).

• GrafiXML[MV08]: GrafiXML is a CUI editor that enables designers to build multi-target UIs
based on UsiXML. It maintains model consistency between three representations (internal:
UsiXML specification, external: interface preview, conceptual: UI model) through a set of
mappings based on a UI ontology. Thus, GrafiXML provides a unique set of features for
supporting designing interfaces for multiple targets. It supports 5 levels of independence
(device, platform, channel, modality, and context of use) in expressing the CUI. It also
supports the automatic generation of UI code in Java, XHTML, HTML and XUL.

85

Related Work

• SketchiXML [CVL06]: SketchiXML is an editor that enables designers, developers, or even
end users to sketch UIs with different levels of details and support for different context of
use. The sketching is analyzed to derive a CUI model. UI elements of the sketch which are
not recognized are saved as images. Another CUI editor, e.g., GrafiXML can then be used
to refine the specification and automatically generate the UI code.

• VisualiXML[SV04]: VisualiXML is a tool to generate a UI from a CUI model based on
generative programming.

The UsiXML tools supporting the specification of different models and transformations are illus-
trated in Figure 7.4. For more details about this approach see [Van05].

Figure 7.4: UsiXML based UI generation approach and supporting tools (copied from [Van05])

7.4 Other Related Approaches

Model-based UI design methods developed and published in the nineties including OVID [RBIM97],
and Idiom [vH94] focus on creating different kinds of models, like user’s conceptual models, task
models and interaction models. Unlike the approach presented in Chapter 3 of this work, which is
model-driven, all the mentioned approaches above are model-based. That is, they allow expressing
an interactive system by task, concept and/or abstract models in a first step and use them in an
informal process or in a sequence of systematic steps to construct a user interface. They do not
support transformations between models on different abstraction levels.

In contrast, UI Frameworks like XUL1 (XML User Interface Language) are able to generate UIs
automatically but they rely on UI models at the abstract widget level, whereas Discourse Models
are located on the task level, which is on a higher level.

Florins et al. describe in [FSV+06] transformation rules for pagination of UIs on different levels.
Pagination is a way of providing a limit and an offset to the number of items fetched, e.g., from a
database and presented to the user in parallel. Partitioning the Discourse Models into presentation
units in the first transformation step provides important guidance for pagination [BFK+08].

1http://www.mozilla.org/projects/xul/

86

http://www.mozilla.org/projects/xul/

Related Work

Botterweck shows in [Bot06] a model-driven approach that starts on the abstract UI level and
contains rich procedural UI descriptions together with UI elements. Thus, it requires UI modeling
as well as dialogue modeling. In contrast the approach presented in Chapter 3 of this doctoral
dissertation starts on the task and domain level and thus no UI modeling and dialog modeling is
involved.

When a GUI is generated for different devices, a mechanism can be applied that transforms a
potentially large interface (highest degree of parallelism) into a more compact (serialized) form.
An easy approach is just to add scroll bars to a GUI developed for a PC application which shall
be used, e.g., on a PDA with reduced screen size. This potentially results in an annoyed user, as
scrolling is often required when using the interface.

To circumvent this drawback, a technique presented in [XLH+09] has been developed which auto-
matically transforms Web pages into hierarchically structured subpages. This approach considers
the size of the screen, the size of page blocks, the number of blocks in each transformed page, the
depth of the hierarchy that the subpages form and the semantic coherence between the blocks.
“Size” is actually interpreted here in terms of number of pixels, i.e., screen resolution. Another
approach to taking screen size into account for generating multi-target user interfaces can be
found in [CVC08], but it actually interprets size as screen resolution as well. It resizes based on
given numbers of pixels on the screen. Note, that such approaches are difficult to apply for touch
screens with variable screen resolution, since the metric size of input widgets matters there.

Design guidelines for finger-based touchscreens are described in [Gal02], e.g., that the object
separation should be at least 1/8′′. As another example, when the consequences of selection
are destructive, i.e., a “remove” or “delete” functionality, confirmation helps to avoid inadvertent
selection.

The minimum size for targets on a touch screen is mentioned in [PKB06]. This study suggests
a size of 9.6mm with 5% erroneous trials for discrete screen objects. Previous studies such as
[PHPC08] investigated touch key design for target selection on a mobile phone, more precisely the
size of objects and their location on the screen. However, this study focused on mobile phones,
which have more constraints on the screen size than, e.g., touch screens for kiosk applications. A
main result of this study was that larger touch key sizes lead to higher performance and more
subjective satisfaction. The size of the targets on a touch screen is also part of an empirical study
in [Ben99]. It points out that large targets should be used whenever possible, having benefits like
reduced contact time and fewer errors. However, a drawback of large targets are fewer manipulable
objects on the screen.

The UI Pilot approach by Puerta et al.[PMM05] is semi-automatic by requiring the designer to
specify tasks and a so-called wireframe, which is a sketch of the proposed behavior, structure,
navigation, and content layout of the GUI, for the user interface. Afterwards, the tool can suggest
widgets for each user interface element. This approach provides more flexibility to the user
interface designer by letting her decide which of the suggested widgets is used. However in contrast
the discourse-based GUI generation approach allows fully automatic content presentation.

Elkoutbi et al.[EKK06] present an approach that generates a user interface prototype from sce-
narios. Scenarios are enriched with UI information and are automatically transformed into UML
statecharts, which are then used for UI prototype structure and behavior generation. In contrast
to this approach, the discourse-based GUI generation approach models classes of dialogues sup-
porting a set of scenarios. The discourse models are transformed to UML statecharts as well, but
we do not have to enrich them for this purpose.

87

Related Work

Pederiva et al.[PVE+07] describe a beautification process that helps a designer to improve a
generated user interface via a constrained user interface editor. The manual modifications to
make a UI look more beautiful are called beautification. This editor allows applying beauti-
fication operations to specific UI elements, resulting in model-to-model transformation. Since
the discourse-based GUI generation approach involves content presentation according to purpose,
beautification should be less important for this part of UI generation.

A transformation system that fits Web pages automated and on-the-fly to screens of small devices
is presented in [XLH+09]. The transformations are performed in order to minimize navigation and
scrolling like in the discourse-based GUI generation approach. In contrast, however, this process
alters an already existing UI.

Declarative user interface specifications are used as input for multi-target UI generation in [GW04].
The user interface adaption is treated as an optimization problem based on a user- and device-
specific cost function. Compared to such user interface specifications, discourse models are on a
higher level of abstraction.

The model-driven approach for engineering multi-target UIs presented in [CVC08] supports switch-
ing between generated presentations during runtime. The discourse-based UI generation approach,
in contrast, is intended to automatically generate GUIs for different screens of small size from a
single discourse model.

In the literature, a system that allows the automatic derivation of inverse transformation rules
is called Automatic Round trip Engineering System (ARES). A systematic method to construct
ARES is explained in [Aßm03]. However, there is no solution given on how the inverse transfor-
mation rules can be derived automatically.

Using transformations as a bridge between different “worlds” (requirements and UI specifications)
can also be found in the work presented by Panach et al.[PEPP08]. They propose a method
to bring Software Engineering and Human-Computer Interaction closer together. They capture
interactions with sketches and transform them into structural patterns of CTT. Similarly to the
UI generation approach based on requirements models as presented in Chapter 4 of this work,
they transform up and downwards in the reference framework [CCT+03]. In addition, the UI
generation approach based on requirements models as presented in Chapter 4 of this dissertation
transforms horizontally (on the same level of abstraction) and between different “worlds”. Unlike
other approaches like the model-driven prototyping proposed in [MBR07], the approach presented
in Chapter 4 of this work also transform between models on the same abstraction level.

In [CH03] a classification of model transformation approaches is given. Bidirectional transfor-
mations can be achieved using bidirectional rules or by defining two separate complementary
unidirectional rules, one for each direction. The UI generation approach based on requirements
models presented in Chapter 4 of this work uses two separate unidirectional rules to achieve bidi-
rectional transformations. It is explained that declarative rules can often be applied in the inverse
direction, too. However, since different inputs may lead to the same output, the inverse of a rule
may not be a function. For procedural rules like in MOLA, there is no approach explained how
to derive the inverse systematically.

In [CFH+09], the state of the art in bidirectional transformations is presented. Transforming
between different views is most suitable with a bidirectional transformation language because the
checking required to ensure consistency of two separate transformations is hard, error prone, and
likely to cause inconsistency. However, the approach presented in Chapter 4 of this work shows
how to automatically derive inverse transformation rules from an existing set of unidirectional

88

Related Work

transformation rules defined in a unidirectional transformation language (MOLA). By automati-
cally generating the inverse transformation rule to a unidirectional one, we assure consistency.

In [Ste07], bidirectional model transformations in QVT are analyzed and some semantic issues
are discussed. It is argued that the practical use of bidirectional transformations is hindered
because there is no guarantee that a hand-written or automatically derived inverse transformation
really is an inverse of a given forward transformation. However, automatically derived inverse
transformations can assure consistency and help to reduce the transformation rule specification
effort.

89

8 Conclusion and Future Work

This chapter draws the conclusions and presents some directions for future work.

8.1 Conclusion

In this dissertation, I present a new approach to generating Structural UI Models by applying
model-driven transformations to Discourse Models1. Discourse Models are derived from results
of human communication theories, cognitive science and sociology and are used for specifying
interaction design of human-computer interaction of information systems. Thus, they contain ad-
ditional metainformation, like the intention of an interaction, which allows defining sophisticated
transformation rules to transform the Discourse Models to Structural UI Models. The transfor-
mation takes already device constraints into account to generate a UI structure well suited for the
target device, but the resulting UI models are still independent of UI toolkits.

The usual device properties taken into account for automated GUI generation are extended to allow
even application-specific UI generation. Information on pointing granularity for a touch screen is
included. In fact, these are device properties beyond those for physical devices. The extended
specifications are, therefore called, application-tailored device specifications. Transformation rules
for different pointing granularities are defined. Fine pointing granularity leads to smaller input
widgets on the screen, whereas coarse pointing granularity results in larger input widgets. Since
the CommRob feasibility study needed UIs generated for a finger-based touch screen, specific
model-transformation rules for coarse pointing granularity were developed.

Model-transformation rules for fine pointing granularity (e.g. desktop) were also presented. They
were used for semi-automatically generating a usual GUI for use with a mouse as well. So, we
have been able to generate both GUIs semi-automatically from the same high-level discourse
specification. This shows that the transformation rules support the generation of UIs for different
pointing granularities. This flexibility in semi-automatic GUI generation is unique. In particular,
it is based on application-tailored device specifications.

The problem of the presentation of content from the Domain of Discourse according to its purpose
defined in the discourse model is addressed. This purpose relates to the intention indicated by the

1As mentioned in Chapter 1 Discourse Models for general human-machine and machine-machine communi-
cation have been developed in a team effort in the course of the FIT-IT OntoUCP project (No. 809254/9312,
www.ontoucp.org) [FKH+06, BFK+08, BKFP08, PFA+09].

90

Conclusion and Future Work

type of the communicative act that refers to propositional content to be presented. This approach
takes this type into account in the course of automatic content presentation. In this way, it leads
to generated user interfaces with content presentations according to purpose. This shows that the
transformation rules support the presentation of content according to purpose.

A UI generation process that allows the same rule set to be used for generating UIs for devices
with different resolutions is introduced. Through the automatic calculation of space need, it may
even have an advantage in this respect as compared to a human interface designer.

Additionally this doctoral dissertation presents a model-driven approach of forward and inverse
transformations between Requirements Specifications, UI Specifications and UI Prototypes. We
are not aware of any transformation approach between these different “worlds”, which are partly
even on the same level of abstraction. And it is new to have transformations back and forth
between the same pair of models. This approach involves inverse transformations as well. This
dissertation proposes an approach for creating inverse rules semi-automatically through metarules
whenever possible.

Explicit transformations may help to bridge the usual gap between separated Requirements Spec-
ifications, UI Specifications and UI Prototypes. It may also make the overall development more
efficient, since it makes explicit use of artifacts from any one “world” to create artifacts in the
other one.

Furthermore we present a comparison between a declarative and a procedural transformation lan-
guage. The declarative transformation language, specifically DTL, is used in the discourse-based
UI generation approach presented in Chapter 3 of this work. The procedural transformation lan-
guage, particularly MOLA, is used for the UI generation approach based on requirements models
presented in Chapter 4 of this dissertation. The advantages of each transformation language are
discussed and a summary of the comparison is presented. We observed that writing rules in MOLA
is much more work than in DTL, because the designer has to take care of the execution order
by herself in MOLA, whereas in DTL it is handled by the framework. Thus MOLA can be more
suitable for expert users because it allows them to have more influence on the transformation
process, whereas DTL is more end user friendly because it allows the designer to focus on the
development of the transformation rules.

Finally a Feasibility Study shows the applicability of the discourse-based UI generation approach.
In particular, the GUI for the touchscreen of a robot trolley has been partly generated. It illustrates
that high-level models and transformation rules capture all necessary information for WIMP UI
structure generation.

8.2 Future Work

There are several areas in which this work can be extended:

Development of a graphical rule editor: Rendering GUI panels and other groups of Com-
municative Act (e.g., alternative sequences in speech) is currently governed by rules which are
based on matching the respective set of Communicative Acts. These rules are currently wired
in, and cannot be visualized and changed by the modeler easily. A designer would benefit if she
can see a visual representation of the rendering rules that produce a particular panel in the final
GUI. Therefore, a graphical rule editor could be developed which would allow easy editing for the
creation of transformation rules.

91

Conclusion and Future Work

Extending the approach to an interactive UI generation process: The approach presented
in Chapter 3 of this dissertation has restrictions when a GUI for a given given UI design should
be developed, which has been shown in the feasibility study in Chapter 6. The only place for
tweaking are the transformation rules, which can only influence the UI subpart generated by
them. Therefore, interactive support for the human designer is needed to enable her to make
informed design decisions, thus leading to a more satisfying result for the end user as well as
making the UI development for a given UI design much easier for the designer. More details
about this planned extension of this approach can be found in [Ran10].

Transform UI Sketches automatically to Discourse Models: Discourse Models might be
intuitive to many people but if it comes to the GUI generation they might be to abstract for many
end users. Therefore, allowing end users to sketch UIs by hand and let them automatically be
transformed to Discourse Models could even simplify the UI development process for end users.
Other approaches like [KCV10],[PEPA08] are already trying to transform UI sketches to Concur
Task Trees. The existing knowledge could be used to support the development of transformations
from UI Sketches to Discourse Models.

92

Literature

[Aßm03] Uwe Aßmann. Automatic roundtrip engineering. Electronic Notes in Theoretical
Computer Science, 82(5):33 – 41, 2003. SC 2003, Workshop on Software Composition
(Satellite Event for ETAPS 2003). 88

[BEF+10] C. Bogdan, D. Ertl, J. Falb, A. Green, S. Kavaldjian, D. Raneburger, and A. Szep.
D7.4 report on development of dialogue design support features. Technical report,
EU Project CommRob, 2010. 65

[Ben99] Gregory T. Bender. Touch Screen Performance as a Function of the Duration of
Auditory Feedback and Target Size. PhD thesis, Wichita State University, 1999. 87

[BFK+08] Cristian Bogdan, Jürgen Falb, Hermann Kaindl, Sevan Kavaldjian, Roman Popp,
Helmut Horacek, Edin Arnautovic, and Alexander Szep. Generating an abstract user
interface from a discourse model inspired by human communication. In Proceedings
of the 41st Annual Hawaii International Conference on System Sciences (HICSS-41),
Piscataway, NJ, USA, January 2008. IEEE Computer Society Press. 1, 13, 86, 90

[BKFP08] Christian Bogdan, Hermann Kaindl, Jürgen Falb, and Roman Popp. Modeling of
interaction design by end users through discourse modeling. In Proceedings of the
2008 ACM International Conference on Intelligent User Interfaces (IUI 2008), Mas-
palomas, Gran Canaria, Spain, 2008. ACM Press: New York, NY. 1, 13, 90

[Bot06] Goetz Botterweck. A model-driven approach to the engineering of multiple user
interfaces. In Proceedings of the MoDELS’06 Workshop on Model Driven Development
of Advanced User Interfaces, Genova, Italy, Oct. 2006. CEUR-WS. 87

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouillon,
and Jean Vanderdonckt. A unifying reference framework for multi-target user inter-
faces. Interacting with Computers, 15(3):289 – 308, 2003. Computer-Aided Design of
User Interface. 8, 45, 88

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,
and James F. Terwilliger. Bidirectional transformations: A cross-discipline perspec-
tive. In ICMT, pages 260–283, 2009. 88

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In OOPSLA’03 Workshop on Generative Techniques in the Context of
Model-Driven Architecture, 2003. 88

93

LITERATURE LITERATURE

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Syst. J., 45(3):621–645, 2006. VII, 6, 54

[CL99] Larry L. Constantine and Lucy A. D. Lockwood. Software for use: a practical guide
to the models and methods of usage-centered design. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1999. 46

[CVC08] Benoît Collignon, Jean Vanderdonckt, and Gaëlle Calvary. Model-driven engineer-
ing of multi-target plastic user interfaces. In Proceedings of the Fourth International
Conference on Autonomic and Autonomous Systems (ICAS 2008), pages 7–14, Wash-
ington, DC, USA, 2008. IEEE Computer Society. 87, 88

[CVL06] Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg. Sketchixml: A design
tool for informal user interface rapid prototyping. In RISE, pages 160–176, 2006. 86

[dBC07] Jan Van den Bergh and Karin Coninx. From task to dialog model in the UML. In
Proceedings of the 6th International Workshop on Task Models and Diagrams for User
Interface Design (TAMODIA 2007), LNCS 4849, pages 98–111, Toulouse, France,
Nov 2007. Springer. 84

[EFK+10a] D. Ertl, J. Falb, H. Kaindl, S. Kavaldjian, R. Popp, D. Raneburger, and A. Szep. D5.5
final report on the development of the communication platform. Technical report,
EU Project CommRob, 2010. 65

[EFK10b] Dominik Ertl, Jürgen Falb, and Hermann Kaindl. Semi-automatically configured
fission for multimodal user interfaces. In ACHI, pages 85–90, 2010. 74

[EKA+11] Dominik Ertl, Hermann Kaindl, Edin Arnautovic, Jürgen Falb, and Roman Popp.
Discourse-based interaction models for recommendation processes. In The Fourth
International Conference on Advances in Computer-Human Interactions, ACHI 2011,
2011. 66

[EKK06] Mohammed Elkoutbi, Ismaïl Khriss, and Rudolf K. Keller. Automated prototyping of
user interfaces based on UML scenarios. Automated Software Engineering, 13(1):5–40,
2006. 87

[EKKF10] Dominik Ertl, Sevan Kavaldjian, Hermann Kaindl, and Jüergen Falb. Semi-
automatically generated high-level fusion for multimodal user interfaces. In Pro-
ceedings of the 43nd Annual Hawaii International Conference on System Sciences
(HICSS-43), Piscataway, NJ, USA, 2010. IEEE Computer Society Press. 74, 79

[EPP06] Sergio España, Inés Pederiva, and José Ignacio Panach. Integrating model-based and
task-based approaches to user interface generation. In CADUI, pages 253–260, 2006.
82

[FFS+04] Elizabeth Furtado, Vasco Furtado, Kênia Soares Sousa, Jean Vanderdonckt, and
Quentin Limbourg. Knowixml: a knowledge-based system generating multiple ab-
stract user interfaces in usixml. In TAMODIA, pages 121–128, 2004. 85

[FKH+06] Jürgen Falb, Hermann Kaindl, Helmut Horacek, Cristian Bogdan, Roman Popp,
and Edin Arnautovic. A discourse model for interaction design based on theories
of human communication. In Extended Abstracts on Human Factors in Computing
Systems (CHI ’06), pages 754–759. ACM Press: New York, NY, 2006. 1, 13, 90

94

LITERATURE LITERATURE

[FSV+06] Murielle Florins, Francisco Montero Simarro, Jean Vanderdonckt, Benjamin Mi-
chotte, and Benjamin Michotto. Splitting rules for graceful degradation of user in-
terfaces. In Proceedings of the International Working Conference Advanced Visual
Interfaces (AVI 2006), pages 59–66, New York, NY, USA, 2006. ACM Press. 86

[Gal02] Wilbert O. Galitz. The Essential Guide to User Interface Design: An Introduction
to GUI Design Principles and Techniques. John Wiley & Sons, Inc., New York, NY,
USA, 2002. 87

[GW04] Krzysztof Gajos and Daniel S. Weld. SUPPLE: Automatically generating user inter-
faces. In Proceedings of the 9th International Conference on Intelligent User Interface
(IUI ’04), pages 93–100, New York, NY, USA, 2004. ACM Press. 88

[Kav07] Sevan Kavaldjian. A model-driven approach to generating user interfaces. In ESEC-
FSE companion ’07: The 6th Joint Meeting on European software engineering confer-
ence and the ACM SIGSOFT symposium on the foundations of software engineering,
pages 603–606, New York, NY, USA, 2007. ACM. 2

[KBFK08] Sevan Kavaldjian, Cristian Bogdan, Jürgen Falb, and Hermann Kaindl. Transforming
discourse models to structural user interface models. In Models in Software Engineer-
ing, LNCS 5002, volume 5002/2008, pages 77–88. Springer, Berlin / Heidelberg, 2008.
12, 17

[KCV10] Suzanne Kieffer, Adrien Coyette, and Jean Vanderdonckt. User interface design by
sketching: a complexity analysis of widget representations. In EICS, pages 57–66,
2010. 92

[KFK09] Sevan Kavaldjian, Jürgen Falb, and Hermann Kaindl. Generating content presenta-
tion according to purpose. In Proceedings of the 2009 IEEE International Conference
on Systems, Man and Cybernetics (SMC2009), San Antonio, TX, USA, Oct. 2009.
12, 24

[KKMF09] Sevan Kavaldjian, Hermann Kaindl, Kizito Ssamula Mukasa, and Jürgen Falb. Trans-
formations between specifications of requirements and user interfaces. In Proceedings
of the IUI’09 Workshop on Model Driven Development of Advanced User Interfaces,
Sanibel Island, Florida, USA, 2009. 42

[KRF+09] Sevan Kavaldjian, David Raneburger, Jürgen Falb, Hermann Kaindl, and Dominik
Ertl. Semi-automatic user interface generation considering pointing granularity. In
Proceedings of the 2009 IEEE International Conference on Systems, Man and Cyber-
netics (SMC 2009), San Antonio, TX, USA, Oct. 2009. 12, 29

[KRP+10] Sevan Kavaldjian, David Raneburger, Roman Popp, Michael Leitner, Jürgen Falb,
and Hermann Kaindl. Automated optimization of uis for screens with limited resolu-
tion. In Proceedings of the 5th International Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, Atlanta, Georgia, USA, 2010. 12, 36

[KSS+07] Hermann Kaindl, Michał Śmiałek, Davor Svetinovic, Albert Ambroziewicz, Jacek
Bojarski, Wiktor Nowakowski, Tomasz Straszak, Hannes Schwarz, Daniel Bildhauer,
John P Brogan, Kizito Ssamula Mukasa, Katharina Wolter, and Thorsten Krebs. Re-
quirements specification language definition. Project Deliverable D2.4.1, ReDSeeDS
Project, 2007. www.redseeds.eu. VIII, 42, 43, 44, 45, 46

95

LITERATURE LITERATURE

[Lei10] Michael Leitner. Space-saving placement using a structural user interface model.
Master’s thesis, Technische Universität Wien, Fakultät für Elektrotechnik und Infor-
mationstechnik, Institut für Computertechnik, E384, 2010. 74

[LFG90] Paul Luff, David Frohlich, and Nigel Gilbert. Computers and Conversation. Academic
Press, London, UK, January 1990. 13

[LV04a] Quentin Limbourg and Jean Vanderdonckt. Addressing the mapping problem in user
interface design with usixml. In TAMODIA, pages 155–163, 2004. 85

[LV04b] Quentin Limbourg and Jean Vanderdonckt. Transformational development of user
interfaces with graph transformations. In CADUI, pages 105–118, 2004. 85

[MBR07] T. Memmel, C. Bock, and H. Reiterer. Model-driven prototyping for corporate soft-
ware specification. In Engineering Interactive Systems: EIS 2007 Joint Working Con-
ferences, EHCI 2007, DSV-IS 2007, HCSE 2007, pages 158 – 174. Springer, March
2007. 88

[MK08] K.S. Mukasa and H. Kaindl. An integration of requirements and user interface specifi-
cations. In Proceedings of the Sixteenth IEEE International Requirements Engineering
Conference (RE’08), September 2008. 42

[MLJ06] Francisco Montero and Víctor López-Jaquero. Idealxml: An interaction design tool.
In CADUI, pages 245–252, 2006. 85

[MM03] Joaquin Miller and Jishnu Mukerji, editors. MDA Guide Version 1.0.1, omg/03-06-
01. Object Management Group, 2003. 5

[MPS04] G. Mori, F. Paternò, and C. Santoro. Design and development of multidevice user
interfaces through multiple logical descriptions. IEEE Transactions on Software En-
gineering, 30(8):507–520, 8 2004. VIII, 81, 82, 83, 84

[MSUW04] Stephen J Mellor, Kendall Scott, Axel Uhl, and DirkWeise. MDA Distilled: Principles
of Model Driven Architecture. Addison-Wesley, 2004. 5

[MT88] W. C. Mann and S.A. Thompson. Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281, 1988. 13

[MV08] Benjamin Michotte and Jean Vanderdonckt. GrafiXML, a multi-target user interface
builder based on UsiXML. In Proceedings of the Fourth International Conference
on Autonomic and Autonomous Systems, pages 15–22, Washington, DC, USA, 2008.
IEEE Computer Society. 85

[PEPA08] Oscar Pastor, Sergio España, José Ignacio Panach, and Nathalie Aquino. Model-
driven development. Informatik Spektrum, 31(5):394–407, 2008. VIII, 81, 82, 83,
92

[PEPP08] J. I. Panach, S. Espana, I. Pederiva, and O. Pastor. Capturing interaction require-
ments in a model transformation technology based on MDA. Journal of Universal
Computer Science, 14(9):1480–1495, 2008. 88

96

LITERATURE LITERATURE

[PFA+09] Roman Popp, Jürgen Falb, Edin Arnautovic, Hermann Kaindl, Sevan Kavaldjian,
Dominik Ertl, Helmut Horacek, and Cristian Bogdan. Automatic generation of the
behavior of a user interface from a high-level discourse model. In Proceedings of
the 42nd Annual Hawaii International Conference on System Sciences (HICSS-42),
Piscataway, NJ, USA, 2009. IEEE Computer Society Press. 1, 13, 41, 84, 90

[PHPC08] Yong S. Park, Sung H. Han, Jaehyun Park, and Youngseok Cho. Touch key design for
target selection on a mobile phone. In Proceedings of the 10th International Confer-
ence on Human-Computer Interaction with Mobile Devices and Services (MobileHCI
2008), pages 423–426, New York, NY, USA, 2008. ACM. 87

[PKB06] Pekka Parhi, Amy K. Karlson, and Benjamin B. Bederson. Target size study for one-
handed thumb use on small touchscreen devices. In Proceedings of the 8th Interna-
tional Conference on Human-Computer Interaction with Mobile Devices and Services
(MobileHCI 2006), pages 203–210, New York, NY, USA, 2006. ACM. 87

[PMM05] Angel Puerta, Michael Micheletti, and Alan Mak. The UI Pilot: A model-based tool
to guide early interface design. In Proceedings of the 10th International Conference
on Intelligent User Interfaces (IUI’05), pages 215–222, New York, NY, USA, 2005.
ACM Press. 87

[PSS09] Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. Maria: A universal, declar-
ative, multiple abstraction-level language for service-oriented applications in ubiqui-
tous environments. ACM Trans. Comput.-Hum. Interact., 16:19:1–19:30, November
2009. 84

[PVE+07] Inés Pederiva, Jean Vanderdonckt, Sergio España, Ignacio Panach, and Oscar Pas-
tor. The beautification process in model-driven engineering of user interfaces. In
Proceedings of the 11th IFIP TC 13 International Conference on Human-Computer
Interaction — INTERACT 2007, Part I, LNCS 4662, pages 411–425, Rio de Janeiro,
Brazil, Sept. 2007. Springer Berlin / Heidelberg. 88

[Ran08] David Raneburger. Automated graphical user interface generation based on an ab-
stract user interface specification. Master’s thesis, Technische Universität Wien,
Fakultät für Elektrotechnik und Informationstechnik, Institut für Computertechnik,
E384, 2008. 2, 12, 41

[Ran10] David Raneburger. Interactive model driven graphical user interface generation. In
Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS ’10), pages 321–324, New York, NY, USA, 2010. ACM. 11,
79, 92

[RBIM97] D. Roberts, D. Berry, S. Isensee, and J. Mullaly. Developing software using OVID.
IEEE Software, 14(4):51–57, July-Aug. 1997. 86

[RPK+11a] David Raneburger, Roman Popp, Hermann Kaindl, Jürgen Falb, and Dominik Ertl.
Automated generation of device-specific WIMP UIs: Weaving of structural and be-
havioral models. In Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS ’11), New York, NY, USA, to appear June
2011. ACM. 10

97

LITERATURE LITERATURE

[RPK+11b] David Raneburger, Roman Popp, Sevan Kavaldjian, Hermann Kaindl, and Jürgen
Falb. Optimized GUI generation for small screens. In Heinrich Hussmann, Ger-
rit Meixner, and Detlef Zuehlke, editors, Model-Driven Development of Advanced
User Interfaces, volume 340 of Studies in Computational Intelligence, pages 107–122.
Springer Berlin / Heidelberg, 2011. VIII, 37, 39

[Sch10] Alexander Schörkhuber. Integritätsprüfung von diskursmodellen, transformation-
sregeln und strukturellen modellen von graphischen user interfaces. Master’s thesis,
Technische Universität Wien, Fakultät für Elektrotechnik und Informationstechnik,
Institut für Computertechnik, E384, 2010. 80

[Sea69] J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, England, 1969. 13

[Sos10] Agris Sostaks. Bringing domain knowledge to pattern matching. In Databases and
Information Systems VI - Selected Papers from the Ninth International Baltic Con-
ference, DB&IS 2010, July 5-7, 2010, Riga, Latvia, pages 66–79, 2010. 54

[Ste07] Perdita Stevens. Bidirectional model transformations in qvt: Semantic issues and
open questions. In MoDELS, pages 1–15, 2007. 89

[SV04] Max Schlee and Jean Vanderdonckt. Generative programming of graphical user in-
terfaces. In AVI, pages 403–406, 2004. 86

[SV06] T Stahl and M Voelter. Model-Driven Software Development (Technology, Engeneer-
ing, Management). John Wiley & Sons, 2006. 5

[Van05] Jean Vanderdonckt. A mda-compliant environment for developing user interfaces of
information systems. In CAiSE, pages 16–31, 2005. VII, VIII, 5, 8, 81, 86

[Van08] Jean M. Vanderdonckt. Model-driven engineering of user interfaces: Promises, suc-
cesses, and failures. In Proceedings of 5th Annual Romanian Conf. on Human-
Computer Interaction, pages 1–10. Matrix ROM, Bucaresti, Sept. 2008. VII, 9

[vH94] M. van Harmelen. Object oriented modelling and specification for user interface
design. In Interactive Systems: Design, Specification and Verification, 1994. 86

[WSBK08] K. Wolter, M. Smialek, D. Bildhauer, and H. Kaindl. Reusing terminology for re-
quirements specifications from WordNet. In Proceedings of the Sixteenth IEEE Inter-
national Requirements Engineering Conference (RE’08), September 2008. 43

[XLH+09] Xiangye Xiao, Qiong Luo, Dan Hong, Hongbo Fu, Xing Xie, and Wei-Ying Ma.
Browsing on small displays by transforming web pages into hierarchically structured
subpages. ACM Transactions on the Web, 3(1):1–36, 2009. 87, 88

98

	Titlepage
	Introduction
	Motivation
	Research Problem
	Thesis Statement
	Thesis Structure

	Background on Model Driven Software Development
	Model Driven Software Development in General
	Model-to-Model Transformation Approaches
	Model-Driven User Interface Development
	Model-Driven GUI Structure and Behavior Generation
	Model-Driven Fully- vs. Semi-Automatic UI Generation

	Automated Discourse-based WIMP UI Structure Generation
	The Transformation Approach
	Transformation Input - Discourse Model
	Transformation Output - Structural UI Model
	The Discourse to Structural UI Model Transformation Process
	Transformation Rules
	General Purpose GUI Transformation Rules
	Content Transformation Rules Specific to Intentions
	Finger-based Touchscreen Specific Transformation Rules
	Transformation Rules for Different Screen Sizes

	Model-to-Code Transformation

	Requirements-based GUI Prototype Generation with Procedural Rules
	The RSL Metamodel
	Transformations from Requirements Specifications via UI Specifications to UI Prototypes
	Transformations from UI Prototypes via UI Specifications to Requirements Specifications
	Deriving Inverse Transformation Rules Automatically

	Comparison between a Declarative and a Procedural Transformation Language
	MOLA vs. DTL
	General Transformation Rule Comparison
	Concrete Rule Example Comparison
	Personal Experience with DTL and MOLA

	Differences between MOLA and DTL
	Comparison Summary

	Feasibility Study CommRob: GUI Generation for a Given Finger-based Touchscreen GUI Design
	The CommRob Discourse Models and the Corresponding GUI
	The CommRob GUI Generation Challenge
	Adapting Layout According to a Given Design
	Presenting Content According to a Given Design
	Customising Style According to a Given Design

	Lessons Learned

	Related Work
	User interface Generation with the OlivaNova Model Execution System
	Generation of UIs based on Task Models
	UsiXML-based MDA-compliant Environment for Developing UIs
	Other Related Approaches

	Conclusion and Future Work
	Conclusion
	Future Work

	Literature

