DIPLOMARBEIT

Integritatspriifung von Diskursmodellen,
Transformationsregeln und strukturellen Modellen von
graphischen User Interfaces

ausgefiihrt zur Erlangung des akademischen Grades
eines Diplom-Ingenieurs unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
Proj.Ass. Dipl.-Ing. Dr.techn. Jiirgen Falb
Proj.Ass. Dipl.-Ing. David Raneburger

am

Institut fiir Computertechnik (E384)

der Technischen Universitidt Wien

durch

Alexander Schorkhuber
Matr.Nr. 0025376
Miihlbachstrasse 21, 4451 Garsten

Wien, am 3.11.2010

Kurzfassung

User Interfaces kénnen mit Hilfe von Tools auch automatisch oder semi-automatisch generiert
werden. Ein derartiges Tool ist das Unified Communication Plattform (UCP)-Framework, wel-
ches es ermdglicht aus Diskursmodellen User Interfaces zu generieren. Im Zuge dieser Diplom-
arbeit wurden Eigenschaften untersucht und Modellintegritdtsbedingungen definiert, welchen die
Diskursmodelle sowie weitere Modelle im Rahmen der Generierung (Structural UI-Modelle und
Regelmodelle) gentigen miissen, damit aus diesen mit dem UCP-Framework User Interfaces ge-
neriert werden kénnen. Unter Verwendung des sog. Validation Frameworks des Eclipse Modeling
Frameworks (EMF), welches eine einfache Einbindung von Modellpriifungen erméglicht, wurden
entsprechende Modellpriifungs-Plugins realisiert. In diesen wurden die Modellintegritdtsbedingun-
gen in Form von Constraints implementiert. Zur Formulierung dieser Constraints wurde Java und
die Object Constraint Language (OCL) verwendet. OCL ist eine Erweiterung der Unified Modelling
Language (UML), welche eine eigens fiir den Zweck der Formulierung von Giiltigkeitsbedingun-
gen geschaffene Sprache darstellt. Diese Uberpriifungen sollen dazu fiihren, dass (in diesem Sinn)
korrekte Modelle rascher erstellt werden kénnen und damit ein schnelleres Erstellen eines User
Interfaces mit diesem Ansatz méglich wird.

Abstract

User interfaces can be generated by tools in an automated or semi-automated way. One of the-
se tools is the Unified Communication Platform (UCP)-Framework, which allows user interface
generation based on discourse-models. This thesis evaluates properties of UCP-models and de-
fines model integrity criteria. These must be met by discourse-models and other models used
for generating user interfaces (structural Ul-models and rule-models), to serve as a basis for the
UCP-Framework for user interface generation. Model check plugins were created using the so-
called Validation Framework of the Eclipse Modeling Framework (EMF), which allows an easy
inclusion of model checks. These plugins contain model integrity criteria implemented in the form
of constraints. These constraints were written in Java and the Object Constraint Language (OCL).
OCL is an addition to the Unified Modeling Language (UML) and was created for the definition of
integrity criteria. These checks should allow — in this context — a faster creation of correct models,
and subsequently a faster generation of user interfaces.

I

Danksagung

Ich mdéchte allen danken, die mich bei dieser Diplomarbeit unterstiitzt haben.
Allen voran meinen Eltern fiir ihre Engelsgeduld, ihre Liebe und ihre finanzielle Unterstiitzung.

Des Weiteren mochte ich all meinen Freunden fiir ihren unerschiitterlichen Glauben an mich dan-
ken und fiir das Erfiillen der Bitte, um einen Tritt in den Allerwertesten, falls ich mit meiner
Leistung unzufrieden war. An meine Karatekas wurde diese Bitte ob der Gefahr einer allzu wort-
lichen Auslegung nicht gerichtet, doch auch sie standen mir mit Motivation zur Seite.

Ich m&chte mich bei meinen Betreuern und dem gesamten UCP-Projektteam bedanken fiir die
Hilfe und prompte Betreuung, die sie mir angedeihen liefsen. Allen voran David, der zu jeder Tages
und Nachtzeit ein offenes Ohr und eine Losung fiir all meine Probleme hatte.

Terry Pratchett und Gunkl, die mich lehrten den Spaf in der Wissenschaft zu sehen, welcher die
Basis bildet, sich ein Leben lang mit Freude weiterzubilden.

Professor Fasching, Lissmann und Nitzsche, deren Ideen meine Sicht auf die Welt umkrempelten
und auf eine neue Basis stellten.

Shihan Funakoshi der als oberstes Ziel die Perfektion des Charakters definierte.

I11

INHALTSVERZEICHNIS

1 Einleitung

2 Basis der Arbeit

2.1 Diskursmodellierung e
2.2 UCP-Framework e
2.2.1 Kommunikationsmodello 0 o
2.2.2 GUI-Generierung o
2.2.3 Beispiel - Shop
2.3 Modellintegritétskriteriumspriiffung o Lo Lo
231 ECore e
232 OCL e
2.3.3 Java Constraints Lo
2.3.4 Validation Framework o

3 Realisierung von Modellintegrititspriifungen fiir das UCP-Framework

3.1 Konzepte und Strategieno
3.2 Validation Frameworko
3.2.1 Implementierung des Validation Framework
3.2.2 Validation-Plugins L o
3.3 Implementierung der Constraints Lo
3.3.1 Implementierungs-Strategien L.
3.3.2 Diskursmodell-Constraints oo
3.3.3 Transformationsregelmodell-Constraints
3.3.4 Structural Ul Constraints
3.4 Evaluierung der Modellpriiffung o
3.4.1 Evaluierung bereits gerenderter Modelle
3.4.2 FEvaluierung des Bike Rental Kommunikationsmodells
3.4.3 Ergebnisse der Evaluierung Lo oL oo
3.4.4 Interpretation der Ergebnisse oL

4 Zusammenfassung und Ausblick
4.1 Zusammenfassung oL e

4.2 Ausblick

A Constraints

v

27
27
28
28
29
32
32
33
43
45
49
50
52
53
o4

56
56
o7

58

B Diskursmodell-Online Shop

Wissenschaftliche Literatur

64

69

ABKURZUNGEN

AST
EMF
GUI
OCL
RST
SQL
SWT
Ul
UML
ucp
XMI
XML

Abstract Syntax Tree
Eclipse Modeling Framework
Graphical User Interface
Object Constraint Language
Rhetorical Structure Theorie
Structured Query Language
Standard Widget Toolkit
User Interface

Unified Modeling Language
Unified Communication Platform
XML Metadata Interchange
Extensible Markup Language

VI

1 EINLEITUNG

Motivation

Die automatische Generierung von User Interfaces (UI) unterstiitzt deren rasches Erstellen und
erlaubt dem Benutzer eigene User Interfaces zu entwickeln, ohne sich zuvor langjdhrige Program-
miererfahrung angeeignet zu haben. Dafiir gibt es zahlreiche Ansitze. Einer von diesen ist das
Unified Communication Platform (UCP)-Framework, welches einen modellbasierten Ansatz zur
semiautomatischen User Interface-Generierung darstellt. Ausgangspunkt ist hierbei ein Kommu-
nikationsmodell, welches durch Transformationsregeln in ein Structural UI-Modell transformiert
wird, aus welchem dann der Quellcode fiir User Interfaces generiert werden kann. Das UCP-
Framework hat sich in den letzten Jahren von einer ersten Idee zu einem funktionierenden Tool
entwickelt.

Wiewohl es funktioniert, ist es allerdings derzeit schwer zu handhaben, da in den Editoren weit
mehr modelliert werden kann als erlaubt ist. Ungiiltige Modelle fithren zu Programmabstiirzen
oder einer fehlerhaften Darstellung im User Interface. Modellfehler werden derzeit als Laufzeit-
fehler mit langen und uniibersichtlichen Java Fehlermeldungen zuriickgemeldet, wodurch eine Mo-
dellierung zu einer langwierigen und schwierigen Aufgabe wird, welche erhebliche Kenntnis iiber
Java, Eclipse Modeling Framework (EMF) und das UCP-Framework erfordert.

Durch eine Definition von Modellintegrititskriterien und die Uberpriifung der Modelle anhand die-
ser, soll der Benutzer von der derzeit notwendigen Kenntnis iiber den inneren Aufbau und Funktion
des UCP-Frameworks befreit werden, sodass sich dieser auf die Modellierung konzentrieren kann.
Durch das Auffinden von Fehlern, gute Fehlermeldungen und Markierung der fehlerhaften Objekte
soll eine raschere Modellierung und damit ein schnelleres Erstellen eines User Interfaces moglich
werden.

Ziel

Ziel der Arbeit war die Entwicklung und Implementierung von Modellintegritdtskriterien, d.h. die
Definition von Giiltigkeitsbereichen fiir Objekteigenschaften und giiltigen Objekt-Beziehungen fiir
die Diskursmodelle, Transformationsregeln und Structural UI-Modelle des UCP-Frameworks.

Es sollen so viele Fehler wie mdglich abgefangen werden, die schwerwiegendsten und hiufigsten
Fehler erkannt und durch gute Fehlermeldungen eine rasche Behebung ermoglicht werden.

Hierbei kann und soll nicht 100%-ige Fehlererkennung erreicht werden. Moglich ist allerdings eine
Reihe von Fehlerklassen zu erkennen und damit die Zahl der méglichen Fehlerquellen fiir unent-
deckte Fehler signifikant einzuschrinken. Dadurch wird auch eine raschere Fehleridentifikation und
Behandlung von unentdeckten Fehlern moglich.

Einleitung

Zur Unterstiitzung der Implementierung gibt es im EMF ein Validation Framework, durch dessen
Verwendung der Fokus auf die Entwicklung von geeigneten Constraints gelegt werden konnte.

Aufbau der Arbeit

Nach diesem einleitenden Kapitel 1, in welchem das Ziel der Arbeit, die Motivation und der Auf-
bau kurz dargelegt werden, folgt in Kapitel 2 eine Einfiihrung in die Diskursmodellierung. Dabei
wird zuerst das UCP-Framework dargelegt und an einem kurzen Beispiel dessen Funktionsweise
erldutert. Dann werden die Mdglichkeiten erdrtert, wie eine Fehleriiberpriifung auf den Modellen
realisiert werden kann, und welche Moglichkeiten das EMF dazu bietet. Auf diesemm Wissen auf-
bauend wird dann in Kapitel 3 beschrieben, wie die konkrete Realisierung vorgenommen wurde.
Ausgehend von den verwendeten Konzepten und Strategien wird dann die Implementierung der
Validation Plugins beschrieben. Hierbei wird vor allem erldutert, warum die in diesen Plugins
enthaltenen Constraints entwickelt wurden und welche Fehlerklassen diese abdecken. Abschlie-
Rend wird erklirt, wie diese evaluiert wurden und die Ergebnisse der Evaluierung prasentiert. In
Kapitel 4 werden die erreichten Ergebnisse zusammengefasst und Ansatzpunkte fiir eine weitere
Entwicklung dargelegt. Der Anhang enthélt schlussendlich die implementierten Constraints.

Um dies alles iibersichtlich zu erdrtern, werden die folgenden Schriftarten fiir die angegebenen
Elemente verwendet:

o Fremdworter sind kursiv gestellt.
e Quellcode ist in Typewriter ausgefiihrt.
o KAPITALCHEN markieren Klassen.

e Constraints sind fett dargestellt.

2 BASIS DER ARBEIT

Den Beginn bilden die Theorien der Modellierung von Kommunikation, welche die Grundlage
fiir das Unified Communication Plattform (UCP)-Framework bilden. Darauf folgt ein Uberblick
iiber die Funktionsweise des Frameworks, welche anschliefend an einem Beispiel verdeutlicht
wird. Abschliefend folgt eine Beschreibung von Modellintegritétskriteriumspriifungen im Allge-
meinen und es werden die Randbedingungen betrachtet, wie diese mit Hilfe des Eclipse Modelling
Framework(EMF)-Validation Framework im UCP-Framework eingesetzt werden konnen.

2.1 Diskursmodellierung

Im Diskursmodell werden alle m&glichen Kommunikationsabldufe modelliert und es bildet die
Basis fiir eine semiautomatische Generierung eines User Interfaces durch das UCP-Framework.

Den Kern der Diskursmodellierung bilden Communicative Acts, welche auf der Speech Act Theo-
rie basieren [Sea69|. Diese stellen die Basiselemente der Kommunikationsmodellierung dar und
modellieren einzelne Kommunikationselemente, wie z.B. Fragen oder Aussagen. Zusammengeho-
rige Communicative Acts werden iiber Adjacency Pairs aus der Conversation Analysis verkniipft
[LFGI0], z.B. zu einem Frage-Antwort Paar. Uber Relationen aus der Rhetorical Structure Theo-
rie (RST) und prozedurale Relationen werden diese schliefslich zu einem Baum aller méglichen
Kommunikationsabléufe verbunden [MT88|. Hierbei werden prozedurale Relationen dazu benutzt,
den Kommunikationsablauf zu steuern, und RST-Relationen verbinden zusammengehorige Dialo-
gelemente.

Eine detailliert Beschreibung, wie diese Elemente dazu benutzt werden, um Kommunikationsab-
ldufe zu modellieren, findet sich in [BFKT08].

2.2 UCP-Framework

Das UCP-Framework bietet die Moglichkeit, ein Modell der Kommunikation in einem graphischen
Editor zu erstellen und dieses anschliefsend in ein Structural User Interface (Structural UT)-Modell
zu transformieren, aus welchem dann konkrete User Interfaces generiert werden kénnen.

Basis der Arbeit

2.2.1 Kommunikationsmodell

Das Kommunikationsmodell besteht aus drei Modellen: Diskursmodell, Domain of Discourse-
Modell und Action-Modell. Diese beinhalten die Elemente, welche fiir die Beschreibung aller még-
lichen Kommunikationsablaufe des Modells im UCP-Framework benttigt werden.

Das Diskursmodell beinhaltet die Information, welche Communicative Acts ausgefithrt werden
und wie diese {iber Relationen, prozedurale Relationen und Adjacency Pairs zu Dialogen verkniipft
werden. Im Domain of Discourse-Modell wird der Teil der Doméne, welche fiir die Kommunikation
bzw. das User Interface notwendig sind, modelliert. Das Action-Modell modelliert die Aktionen,
welche in der Interaktion moglich sind.

Die Struktur dieser Modelle d.h. die in ihnen enthaltenen Objekte und deren Eigenschaften werden
in einem Metamodell beschrieben. Diese iibergeordnete Beschreibung eines Modells legt auch die
Giiltigkeit der Modellelemente fest.

2.2.1.1 Diskursmodell

Das Diskursmodell beschreibt alle méglichen Kommunikationsabldufe.

Dazu muss definiert werden, welcher Aktor welche Entscheidung trifft und welche Aktionen wann
ausgefiithrt werden.

In Bild 2.1 ist das Diskurs-Metamodell zu sehen, welches die Rahmenbedingungen dargestellt,
wie ein Diskursmodell auszusehen hat. Ein konkretes Beispiel findet sich in Kapitel 2.2.3. Die
einzelnen Elemente haben folgende Bedeutung:

e DISCOURSE dient als Ausgangspunkt, auf dem das Diskursmodell aufbaut und als Container,
in welchem alle Diskursmodellelemente enthalten sind.

e RSTRELATION dient zur Verkniipfung von Dialogelementen. Von dieser Klasse werden als
zahlreiche Spezialisierungen die Relationen abgeleitet.

e PROCEDURALRELATION dient zur Steuerung des Kommunikationsablaufs.

e LINK modelliert die Verbindung von RST-Relationen, prozeduralen Relationen und Adja-
cency Pairs.

e SENDERAGENT modelliert einen Aktor, welchem Communicative Acts bzw. Relationen oder
prozedurale Relationen zugeordnet werden. Im Fall eines Communicative Act wird dadurch
definiert, welcher Kommunikationsteilnehmer diesen ausfithrt. Durch die Zuordnung von
prozeduralen Relationen wird definiert, welcher Kommunikationsteilnehmer die eventuell
notwendigen Entscheidungen zu treffen hat.

e COMMUNICATIVEACT ist ein in der Kommunikation vorkommendes Dialogelement.

e ADJACENCYPAIRS verkniipfen Communicative Acts. Ein Communicative Act kann hierbei
vom Typ Opening oder Closing sein.

e CONTENT eines Communicative Acts beschreibt, welche Domain of Discourse-Objekte iiber-
geben und welche Aktionen benutzt werden. Dies definiert, was damit in der Applikations-
logik passieren soll und stellt die Schnittstelle zu dieser dar.

Basis der Arbeit

subDiscourses

. 0.
H EODbject [Eema|nMDdels H Discourse

i{from ecore) = T name : EString

-E;gtinnhﬂndels 63 goal: EString

}

odes 0.*
inserted3equendes ommunicativeActs
H Node

T name : EString

03 0. Tpgrent
H Link
= condition : EString openingCommunicativeAct

o repeatCondition : ESting | (g ,ﬁ,ﬂjacencyF‘aer 1
o type : LinkType *‘--\E__‘Q CommunicaiiveAct
’f ¥ name : ESfring

closingCommunicatiyeActs

childrend..” 01 g+ | T id: EString
* 0.1
0. erforms
agents P emmunleativeAct

0.2

parenEL1 4 0.1/belongsTo

H SenderAgent
agent| o name : EString
1% id: EString

H DiscourseRelation 0.7

relations 0.

content
0.1

H ProceduralRelation| |B R&5TRelation El Content
T specification : EString

Abbildung 2.1: Diskurs-Metamodell

Discourse

Die Klasse DISCOURSE stellt einen Container dar, welcher ein Diskursmodell enthélt. Sie wird auf
mehrere Arten verwendet, welche streng unterschieden werden miissen. Jeder Diskurs kann beliebig
viele SUBDISCOURSES haben und in Adjacency Pairs kénnen INSERTEDSEQUENCES enthalten sein,
welche wiederum einen kompletten Diskurs modellieren. Im Hauptdiskurs miissen die Action-
Modelle und Domain of Discourse-Modelle festgelegt sein, des Weiteren werden hier die beiden
Aktoren vom Typ SenderAgent festgelegt.

Jeder Diskurs benotigt genau einen Root-Node, von welchem der Ablauf der Kommunikation star-
tet. Dieser ist daran erkennbar, dass er keinen Parent besitzt. Die Topologie aller Elemente eines
Diskurses muss ein Baum sein, welcher von einem Root-Node ausgeht. Dies ist bei Adjacency
Pairs und Communicative Act implizit gegeben, da Adjacency Pairs und Communicative Acts
keine Relationen, prozedurale Relationen oder Adjacency Pairs als Nachfolger haben kénnen und

Basis der Arbeit

in Adjacency Pairs immer ein oder mehrere Opening oder Closing Communicative Acts eingetra-
gen werden.

Prozedurale Relationen

Prozedurale Relationen enthalten die Bedingungen, welche den Ablauf der Kommunikation fest-
legen. Durch diese lassen sich auch komplexe und iterative Kommunikationsablaufe modellieren.
Zu ihren Nachfolgern besitzen sie Links, welche die Bedingungen enthalten, wann diese Zwei-
ge ausgefithrt werden. Jede Relation hat eine bestimmte semantische Bedeutung und benétigt
eine bestimmte Anzahl und bestimmte Typen von Links. Alle Spezialisierungen der abstrakten
Klasse PROCEDURALRELATION, welche konkret in einem Diskurs vorkommen kénnen, werden im
Folgenden néher erlautert und sind in Abbildung 2.2 auf der linken Seite dargestellt.

e SEQUENCE
Ziel: Dient dazu, Kommunikationselemente in einer festgelegten Reihenfolge auszufiihren.
Funktion: Die angehingten Nuclei-Links werden der Reihe nach ausgefiihrt.
Zu beachten: Die Relation darf nur Links vom Typ Nucleus besitzen, welche in deren
Eigenschaft condition eindeutig nummeriert sind. Es miissen zwei oder mehr davon vor-
handen sein.

e IFUNTIL
Ziel: Dient einerseits dazu Abfragen zu realisieren, oder andererseits einen Kommunikati-
onszweig so lange zu wiederholen, bis eine Abbruchbedingung erfiillt ist.
Funktion: Realisiert eine Wenn-Dann Abfrage mit einer bedingten Schleife. Der Tree-Link
wird ausgefiihrt, bis die condition des Then-Links erfiillt ist. Optional kann auch ein Flse-
Link vorhanden sein, welcher ausgefiihrt wird, falls die condition nicht zutrifft.
Zu beachten: Durch das Vorhanden sein von Then und Flse wird ein Verlassen der Schleife
in jedem Fall erzwungen. Dies fithrt dazu, dass zumindest ein Tree und ein Then vorhanden
sein miissen, und im Then eine condition angegeben ist, wann dieser ausgefiihrt werden soll.
Dadurch besteht auch die Mdglichkeit Endlosschleifen zu realisieren, indem die condition
des Then-Links leer bleibt. Dies kann prinzipiell ein erwiinschter Effekt sein, aber auch durch
einen vergessenen Eintrag einer Abbruchbedingung oder das Loschen des die Abbruchbedin-
gung beinhaltenden Links zustande kommen.

e CONDITION
Ziel: Stellt eine Entscheidung zwischen zwei Zweigen anhand einer Bedingung dar.
Funktion: Anhand einer Bedingung wird der Zweig, in dem der Kommunikationsprozess
fortgefiihrt wird, ausgewihlt.
Zu beachten: Dazu wird ein Then-Link und ein Else-Link benotigt, wobei im Then-Link
die condition eingetragen wird, wann dieser Zweig ausgefiihrt wird. Ist diese nicht erfiillt,
wird der Else-Link ausgefiihrt.

RST-Relationen

Jede Relation hat eine bestimmte Aufgabe und benétigt eine bestimmte Anzahl und bestimmte
Typen der ihr zugehorigen Links. Alle Spezialisierungen der abstrakten Klasse RSTRELATION,
welche konkret in einem Diskurs vorkommen kénnen, werden im Folgenden niher erldutert und
sind in Abbildung 2.2 auf der rechten Seite dargestellt.

e RESULT
Ziel: Aus dem Abschluss eines seiner Zweige resultiert die Ausfiihrung des anderen Zweiges.

Basis der Arbeit

H DiscourseRelation

H RSTRelation|

H FroceduralRelztion H RSTSingleNucleusRelation| B RS TMultiNucleusRelation

N/

H Sequence = IfJntil H Condition H Result H Elaboration H Joint H Contrast H Alternative

H Background \

[Annotation

H Title

Abbildung 2.2: RST-Relationen und prozedurale Relationen

Funktion: Nach der erfolgreichen Ausfiihrung des Satellite-Zweiges, wird der Nucleus-Zweig
ausgefiihrt.

Zu beachten: Die Ausfithrung des Nucleus-Zweiges wird durch ein externes Ereignis aus-
gelGst.

ELABORATION

Ziel: Zusitzliche Information zu einem Nucleus-Zweig zu liefern.

Funktion: Im Satellite-Zweig werden zusitzliche Informationen iiber den Nucleus-Zweig
geliefert. Die zugehdrigen Communicative Acts kénnen auch Questions sein, iiber welche die
zusétzliche Information, welche angezeigt werden soll, spezifiziert und ausgewihlt wird.

Zu beachten: Es ist dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

BACKGROUND

Ziel: Zusatzliche Hintergrundinformation zu dem Nucleus-Zweig zu liefern.

Funktion: Hier bietet wie in der ELABORATION der Satellite-Zweig zusétzliche Information
zum Nucleus-Zweig, wobei hier im Unterschied zu einer ELABORATION die Communicative
Acts nur vom Typ INFORMING sein sollten.

Zu beachten: Es sind dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

TITLE

Ziel: Title gibt einem Modellelement eine Uberschrift.

Funktion: Eine Spezialisierung der ELABORATION, wobei hier sowohl Nucleus als auch
Satellite vom Typ Informing sein sollten. Diese Relation kann z.B. dazu benutzt werden,
um einem Infotext eine Uberschrift zu geben, oder Bildern eine kurze Beschreibung zur Seite
zu stellen.

Zu beachten: Es ist dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

ANNOTATION
Ziel: Metadaten zur Verfiigung stellen.

Basis der Arbeit

Funktion: Eine weitere Spezialisierung der ELABORATION, welche dazu benutzt wird, um
im Satellite-Zweig Metadaten zum Nucleus anzuzeigen.
Zu beachten: Es ist dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

e JOINT
Ziel: Verbindet mehrere gleichwertige Kommunikationsablaufe.
Funktion: Im Fall der Relation Joint miissen alle Nuclei-Zweige abgeschlossen sein, damit
die Relationen beendet ist und im Kommunikationsablauf weitergegangen wird.
Zu beachten: Es werden zwei oder mehr Nuclei-Zweige bendtigt.

e ALTERNATIVE
Ziel: Gleichwertige Entscheidungsmoglichkeiten anbieten.
Funktion: Die Entscheidung wird so realisiert, dass die Relation beendet ist, sobald einer
ihrer Zweige abgeschlossen ist.
Zu beachten: Es werden zwei oder mehr Nuclei-Zweige bendtigt.

e CONTRAST
Ziel: Zwei gegensitzliche Entscheidungsmoglichkeiten anbieten.
Funktion: Hier hat jeder Nucleus eine condition, wobei sich diese gegenseitig ausschliefen
miissen. In der condition kénnen auch Domain of Discourse-Modellobjekte mit logischen
Ausdriicken evaluiert werden. Dadurch kann der Kommunikationsfluss dhnlich wie durch
IFUNTIL gesteuert werden.
Zu beachten: Es werden zwei oder mehr Nuclei-Zweige ben&tigt, von denen jeder eine
condition besitzen muss, welche die anderen ausschliefst.

An dieser Stelle konnte man sich fragen, warum genau diese Anzahl an Relationen realisiert wurde,
wo einerseits alles auch mit weniger Relationen modelliert werden kénnte und andererseits auch
zahlreiche weitere Relationen denkbar wéren. All diese Relationen werden bei der Transformation
in ein Structural UI-Modell entsprechend den Regeln umgewandelt und diese Regeln beinhalten
Darstellungsmuster fiir jede Relation. Vor allem ist es auch moglich, fiir jede Relation mehrere
Regeln zu erstellen, wodurch zum Einen eine einheitliche Darstellung erreicht werden kann, wel-
che zum Anderen auch von anderen Parametern abhéngen kann, wie z.B. das Vorhandensein von
speziellen Modellelementen. Des Weiteren entspricht die Verwendung mehrerer verschiedener Re-
lationen eher dem natiirlichen Sprachgebrauch, wodurch die Verstédndlichkeit und Lesbarkeit der
Diskursmodelle verbessert wird.

Links

Wie aus dem Diskursmetamodell, siehe Abbildung 2.1, ersichtlich ist verkniipfen LINKS Relatio-
nen untereinander oder eine Relation mit einem Adjacency Pair. Sie kénnen vom Typ Nucleus,
Satellite, Tree, Then oder FElse sein. Jede Relation bendtigt eine bestimmte Anzahl dieser Linkty-
pen. Je nach Funktion konnen diese Bedingungen besitzen, in welchem Fall der an ihnen hingende
Zweig ausgefiihrt wird.

Agents

Agents modellieren die Kommunikationsteilnehmer und fiithren als solche Communicative Acts
aus. Dazu muss jedem Communicative Act ein Agent zugewiesen werden. Des Weiteren muss
fiir einige Relationen ein Agent definiert sein, der die Entscheidung trifft, in welchem Zweig der
Kommunikationsprozess fortgesetzt wird.

Communicative Acts
Communicative Acts stellen die Dialogbasiselemente, z.B. Fragen oder Antworten, dar. Die in den

Basis der Arbeit

Modellen vorkommenden Spezialisierungen der Klasse COMMUNICATIVEACT sind in Abbildung
2.3 dargestellt.

Adjacency Pairs

Adjacency Pairs verkniipfen einzelne Dialogbasiselemente z.B. in der Form Frage- Antwort, welche
durch die zugehdrigen Communicative Acts verkdrpert werden. Jedes Adjacency Pair hat einen
Opening Communicative Act, und einen oder mehrere Closing Communicative Acts.

H CommunicativeAct
T name : EString

T id: EString
H Assertive H Commissive H Directive
A i
H Informing H Ok H Offer H Question H Request H Reject
H Answer H Accept

H ClosedQuestion |H OpenQuestion

Abbildung 2.3: Communicative Act Taxonomie

Die einzelnen Communicative Acts kénnen nicht beliebig kombiniert werden, sondern es sind
nur spezielle Kombinationen erlaubt und sinnvoll. Opening bzw. Closing kdnnen nur bestimmte
Communicative Acts sein. Die erlaubten Opening Communicative Act-Closing Communicative Act
Paare sind in Tabelle 2.1 dargestellt. Eine Ausnahme stellt hier der Communicative Act Informing
dar. Dieser dient der Darstellung von Information und muss keinen Closing Communicative Act
besitzen.

Im Allgemeinen wird ein Adjacency Pair durch das Ausfiihren eines seiner Closing Communica-
tive Acts geschlossen und eine Relation wird dadurch abgeschlossen, dass je nach Relation eine
bestimmte Anzahl seiner Child-Zweige abgeschlossen werden. In Falle des Communicative Act
Informing wird das zugehorige Adjacency Pair mit der Erfilllung der Relation, an welcher das
Adjacency Pair- Communicative Act Konstrukt hingt, geschlossen.

Content

Ein Communicative Act kann einen Content haben, in welchem beschrieben wird, mit welcher
Funktion der Applikationslogik dieser Communicative Act assoziiert wird und wie die Daten zur
Laufzeit verarbeitet werden. Dies geschieht in einer der Structured Query Language(SQL) &hn-
lichen Sprache, wobei bei deren Entwicklung versucht wurde, diese so weit wie moglich an den
natiirlichen Sprachgebrauch anzupassen. Im Content konnen Action-Modell und Domain of Dis-
course-Modell Objekte enthalten sein.

Basis der Arbeit

Opening CommAct Types | Closing CommAct Types
Open Question Answer
Closed Question Answer
Request Accept
Request Reject
Request Accept & Reject
Request Ok
Request Informing
Offer Accept
Offer Reject
Offer Accept & Reject
Offer Ok
Informing

Informing Ok

Tabelle 2.1: Beziehungen zwischen Communicative Acts [BEFT10]

Ob ein Content nach dessen Eingabe vom Editor geparst werden konnte, sieht man an Hand der
contentASTspecification, in welcher alle Action- und Domain of Discourse-Elemente in aufge-
16ster Form, d.h. mit deren komplettem Pfad zu dem Objekt im zugehorigen Modell, enthalten
sind. Dies ist im Allgemeinen dann der Fall, wenn diese in den im Diskurs definierten Action- und
Domain of Discourse-Modellen enthalten sind. Einige Communicative Acts fordern, dass in ihrem
Content bestimmte Actions oder Spezialisierungen davon enthalten sind, welche im Folgenden
aufgelistet sind.

e Eine ClosedQuestion muss select und for enthalten.
e Fin Informing muss presenting enthalten.
e Fine OpenQuestion muss get oder update und for enthalten.

e Ein Request bendtigt eine Action im Content.

2.2.1.2 Action-Modell

Das Action-Modell bildet die Schnittstelle zur Applikationslogik.

Im UCP-Framework ist ein Basisset von Actions und Notifications im Action-Modell basic de-
finiert. Diese werden dazu verwendet, den Content von Communicative Acts zu definieren. Das
Modell basic und alle verwendeten Action-Modelle miissen dazu im Hauptdiskurs definiert wer-
den.

Fiir eine konkrete Implementierung eines Diskurses ist es mdglich bzw. notwendig, dieses Basisset
um die bendtigte Funktionalitdt zu erweitern. Dies kann einerseits durch die Einfiihrung neuer
Actions und Notifications oder andererseits durch Spezialisierung bestehender geschehen.

Actions und Notifications stellen die Schnittstelle zur Applikationslogik dar. In der finalen Co-
degenerierung werden sie in Dummyfunktionen umgewandelt, welche dann vom Programmierer
mit der Interfacelogik befiillt werden, durch welche die Kommunikation mit der Applikationslogik

10

Basis der Arbeit

besorgt wird. Durch die Spezifikation der parameter, attributes und representations kann
die Schnittstelle ndher definiert und den Erfordernissen des Kommunikationsablaufs angepasst
werden.

2.2.1.3 Domain of Discourse-Modell

Im Domain of Discourse-Modell wird der Teil der Applikationsdoméane modelliert, welcher fiir die
Kommunikation relevant ist.

Dieses Modell kann als Unified Modeling Language (UML)- oder ECore-Diagramm erstellt und
visualisiert werden, wofiir graphischen Editoren zur Verfiigung stehen. Es wird als XML Metadata
Interchange (XMI)-Datei gespeichert und bietet die Objektbeziehungen bei der UI-Generierung.
Die konkreten Instanzen werden diesem Modell entsprechend in einer eigenen XMI-Datei abgelegt.

2.2.2 GUI-Generierung

Durch das UCP-Framework kann aus einem Kommunikationsmodell der Code fiir User Interfaces
generiert werden.

Das Rendern eines Kommunikationsmodells zu einem Graphical User Interface (GUI) ist ein zwei-
stufiger Prozess. Zuerst wird aus den Kommunikationsmodellen ein Stuctural Ul generiert, welches
die Struktur des User Interfaces auf Basis von abstrakten Widgets beschreibt. Dieses Structural
Ul ist unabhéngig von dem verwendeten Ausgabe-Toolkit, welches schlieflich benutzt wird, um
das User Interface darzustellen. Allerdings ist es sehr wohl abhéngig vom Zielgerét, auf welchem
das User Interface dargestellt werden soll. Informationen iiber dieses, wie z.B. Bildschirmauflo-
sung, werden entweder direkt in das Structural UI-Modell eingegeben oder dem Code-Generator
als CSS-Datei iibergeben. [KRRT10]

Diese zweistufige Variante hat zum einen den Vorteil, dass das generierte Structural Ul platfor-
munabhingig ist und im zweiten Schritt durch beliebige G UI-Toolkit Sprachen dargestellt werden
kann. Zum Anderen kann das Design direkt beeinflusst und an das Zielgerit angepasst werden.
Abbildung 2.4 zeigt die Renderingarchitektur, wobei die Modelle hervorgehoben sind an denen
eine Uberpriifung notwendig bzw. sinnvoll und méglich ist.

Ein Discourse To Structural Ul Transformer fiihrt eine Modell-zu-Modell Transformation durch,
welche auf Regeln basiert. Diese Regeln beschreiben, wie aus Mustern von Diskursmodellelementen
ein Structural Ul generiert und transformiert wird. Solch eine Regel kann zum Beispiel besagen,
dass jeder Informing-Communicative Act, welcher sich im Diskursmodell befindet, in das Struc-
tural UI zu einem Panel mit einem Label-Widget transformiert wird. Dieses Label beinhaltet im
Weiteren die Information, welche im entsprechenden Diskursobjekt referenziert ist.

Den Input fiir diesen Transformator bilden die folgenden Modelle:

¢ Kommunikationsmodell, bestehend aus

— Diskursmodell
— Action-Modell

— Domain of Discourse-Modell

11

Basis der Arbeit

Regeln
Kommunikationsmodell Structural Ul
Model2Model L. Model2Code 0
- Diskursmodell Transformation Plattformabhéngig, Transformation Final Ul
- Action-Model| unabhangig vom
- Domain of Discours-Modell Toolkit (SWT, Swing)

Abbildung 2.4: Der UCP-Transformationsprozess

e Regelmodell

e Einschriankungen durch die Spezifizierung der Zielplattform

Die Generierung eines UI aus dem Structural UI erfolgt dann aus:

o Structural UI-Modell

e Formatierungsinformationen, z.B. CSS

Im Action-Modell sind keine Parameter zwingend erforderlich bzw. sind diese bereits durch das
ECore-Modell definiert. Das Domain of Discourse-Modell modelliert jenen Teil der Applikations-
doméne, welcher fiir die Kommunikation relevant ist. Im Domain of Discourse-Modell kénnen
korrekte Objektbeziehungen nicht im Allgemeinen definiert werden. Die korrekte Erstellung und
Verwendung der Action- und Domain of Discourse-Modellobjekte kann erst {iberpriift werden,
wenn diese im Diskursmodell verwendet werden. Erst durch deren Verwendung in den Content-
Sperzifikationen wird im Kontext des Diskursmodelles eine Aussage iiber deren Korrektheit mog-
lich. Bei der Evaluierung der Content-Objekte kann allerdings nicht a priori festgestellt werden,
ob ein Action- oder Domain of Discourse-Modellelement korrekt erstellt und verwendet wurde. Es
kann nur eine Aussage dariiber getroffen werden, ob die in der contentSpezification beschriebe-
ne Verwendung der Modellelemente méglich ist. Falls bei der Uberpriifung von Content-Objekten
ein Fehler auftritt muss der Benutzer entscheiden, ob das Modellobjekt fehlerhaft ist oder es im
Content falsch verwendet wurde.

Einschrankungen durch die Zielplattform und Formatierungsinformationen wéren auf Plausibilitat
iiberpriifbar. Vor der grofen Vielfalt an moglichen Zielplattformen wiren dies allerdings sehr
schwache Finschriankungen. Einzig ein Abfangen von Fehlern, welche durch leere Figenschaftsfelder
hervorgerufen werden konnten, wire moglich. Dies ist allerdings obsolet da derartiges vom Code
Generator abgefangen wird.

Damit bleiben Modellintegritatspriifungen an Diskursmodellen, den Regelmodellen und den Struc-
tural UI-Modellen durchzufiihren.

12

Basis der Arbeit

2.2.2.1 Structural UI-Modell

Das Structural UI-Modell ist ein Zwischenschritt zwischen dem Diskursmodell und dem generier-
ten Code eines User Interfaces.

In Abbildung 2.5 ist ein Ausschnitt aus dem zugehdrigen Metamodell abgebildet, welcher die fiir
die Struktur und das Verhalten relevanten Elemente zeigt. Es ist ein auf Widgets basierender
Baum, welcher die User Interface-Struktur reprisentiert. Basierend auf der abstrakten Klasse
WIDGET werden alle im Structural UI- Modell vorkommenden Elemente von dieser abgeleitet.
Diese Elemente sind entweder INPUTWIDGETS, welche zum Sammeln von Information benutzt
werden, OUTPUTWIDGETS, welche zur Préisentation von Informationen dienen, oder PANELS,
welche weitere WIDGETS beinhalten konnen und zur Strukturierung des User Interfaces bend-
tigt werden. Einen Sonderfall stellt die Klasse LISTWIDGET dar, welches sowohl von der Klasse
INPUTWIDGET als auch von der Klasse PANEL abgeleitet ist.

Jedes dieser Widgets kann Layoutinformationen beinhalten, welche spezifizieren, wie es dargestellt
werden soll. Im Fall der Input Widgets ist auch angegeben, welche Events durch deren Betitigung

ausgelost werden.

H Widget

T vizible - EBoolean

T mame : EString

5 enabled : EBoolean ElT

&% contentSpecification : EString LEvent

= text : EString 5 id: EString

= width - Bint

= height - Eint L'..lt_t

sventstpre
® getframe() - Frame ’
&
Wiy
4 . I !
A LT = AR
H OutputWidget S El Inputiffidget
parant
01
H panel
2 showPanelOnCommact - EBoolean0bject
}
I H nistwicget

T colMumber : Bnt

= renderingType - ListRenderningType

= selectionType - SelectionType

= pointingGranularity - PointingGranularty
= confirmationReguired : EBooleanObject

Abbildung 2.5: Structural UI-Metamodell

Diese abstrakten Widgets sind nicht zu verwechseln mit den gleichnamigen Java Widgets, wie sie
z.B. im Standard Widget Toolkit (SW'T) verwendet werden.

13

Basis der Arbeit

2.2.2.2 Transformationsregeln

Transformationsregeln werden fiir die Modell-zu-Modell Transformation von Diskursmodellen zu
Structural UI-Modellen verwendet. Sie beschreiben, welche Objektbeziehungen eines Diskursmo-
dells auf welche Art und Weise im Structural UI-Modell dargestellt werden.

Dieser Transformationsprozess besteht aus zwei Schritten, wie in [KFK09, Kapitel 3] ndher be-
schrieben ist.

1. Im ersten Schritt werden Transformationsregeln auf Diskursmodellelemente angewandt. Die-
se Transformationsregeln generieren Input- und Output-Widgets bzw. Spezialisierungen von
diesen wie Buttons oder Labels. Diese dienen als Platzhalter fiir Content-Objekte.

2. Im zweiten Schritt werden Content Transformation Rules im Kontext der Transformations-
regeln des ersten Schrittes ausgefiihrt. Diese Einbettung erlaubt die Auswahl von Widgets
flir das schlussendliche Structural UI-Modell basierend auf dem Content Typ, dem diesem
Content zugeordneten Communicative Act Typ und dem gegenwértigen Kontext, in dem
der Communicative Act eingebettet ist. Dieser Kontext wird von der {ibergeordneten Regel
definiert.

Am Ende dieser Transformationen diirfen im Structural UI-Modell keine Input- oder Output-
Widgets mehr vorhanden sein.

Wie aus dem Regel-Metamodell in Abbildung 2.6 ersichtlich, besteht eine Regel im Kern aus
einem Source- und einem Target-Objekt und hat im Parameter type seine Aufgabe spezifiziert.
Sie kann je nach type verschiedenes Verhalten zeigen und neue Structural UI-Objekte kreieren,
bestehende Structural UI-Objekte modifizieren oder 16schen.

k<enumeration>3 H EObject[
2 RuleType (from ecore)
- CREATE
: glg&”?g sourcel 1 target| 1
H Rule
T priority : Elnt
H RuleSet M_ﬁ‘_‘ £ P _
: - T name : ESiring
© name ESING | jjeSet 0.* | 2 type: RuleType 0 1 discourse
[T space : Elnt
[] [H Discours&l

(from discourse)

constraints
I:I *

.:.EI CU”@'E";'?_E (> additionalConstraints mappings| [Mapping
T name : EString 0.”

Abbildung 2.6: Transformationsregel-Metamodell
Das Diskursmodell wird rekursiv durchlaufen und eine Regel wird dann angewandt, wenn deren

Source-Objekt im Diskursmodell gefunden wird. Falls ein Diskursmuster angegeben ist, wird iiber-
priift, ob dieses in dem gefundenen Objekt im Diskursmodell ebenfalls vorliegt. Wenn dies alles

14

Basis der Arbeit

zutrifft, wird das im Target angegebene Objekt kreiert, mit allen im Structural UI-Teil der Regel
spezifizierten Strukturen.

Dieser Prozess wird dadurch erweitert, dass mehrere Transformationsregeln fiir jedes Diskurs-
muster vorliegen diirfen. Durch die Anwendung der sogenannten Conflict Resolution wird die
Regel ausgewiahlt, welche verwendet wird. Dieser Conflict Resolution-Mechanismus muss die Re-
geln nach bestimmten Kriterien auswéhlen. Diese Auswahl kann z.B. anhand des Platzes, welchen
die Widgets im generierten User Interface benotigen, geschehen. Dazu miissen alle Regeln, welche
dasselbe Diskursmuster haben, vom Designer hinsichtlich ihres Platzverbrauches bewertet werden.
[KRRT10]

Sind Mappings vorhanden, so werden Diskursmodellelemente mit Structural Ul-Elementen in
Beziehung gebracht und Eigenschaften des Diskursmodellobjektes auf die Eigenschaften des Struc-
tural UI-Objekts iibertragen.

Constraints stellen zusitzliche Uberpriifungen dar, welche erfiillt sein miissen, damit diese Regel
angewandt wird. Sie kénnen auch Werte enthalten, welche die Darstellung auf einer konkreten
Zielplattform spezifizieren, wie z.B. die Bildschirmgréfse, oder referenzieren auf eine Cascading
Style Sheet (CSS)-Datei, welche die benétigten Formatierungsinformationen enthélt. Hierbei sei
nochmal darauf verwiesen, dass das Structural UI-Modell nur von der Zieltechnologie, d.h. dem
verwendeten Ausgabe- Toolkit unabhéingig ist, nicht allerdings von der Zielplattform und darum
bereits alle Informationen iiber das Layout enthélt.

Ist ein Discourse angegeben, so stellt dieses ein Diskursmuster und auch eine Einschrénkung dar,
da die Regel nur angewandt wird, wenn dieses Muster im Diskursmodell gefunden wird.

2.2.3 Beispiel - Shop

Am Beispiel einer Shop-Applikation sollen diese Modelle nochmals verdeutlicht werden. Ausgehend
von einem Digkursmodell, sieche Anhang B, wird die Transformation in ein Structural UI-Modell
anhand einer Transformationsregel erlautert.

Das zu diesem Diskursmodell gehdrige Domain of Discourse-Modell ist in Abbildung 2.7 darge-
stellt.

Damit ein Ul dargestellt werden kann, miissen noch entsprechende Instanzen der Domain of
Discourse-Modellobjekte den Modellen beigelegt werden. Diese sind in der Datei OnlineShopPre-
viewData.xmi gespeichert. Sie dienen nur der Illustration dieses Beispiels, in einem richtigen User
Interface miissten diese von der Applikation bereitgestellt werden. Diese Shop-Applikation kommt
ohne die Definition eines eigenen Action-Modells aus, da alle bendtigten Actions im Modell basic
bereits vorhanden sind.

Der Kommunikationsablauf beginnt im Diskursmodell in dem unteren IfUntil. Dessen Tree-Zweig
wird solange ausgefiihrt, bis er abgeschlossen ist. An diesem hingt ein weiteres IfUntil, an dessen
Tree-Zweig ein Adjacency Pair, durch eine Raute dargestellt, hiangt. Dieses Adjacency Pair be-
sitzt einen Opening Communicative Act (ClosedQuestion - AskForProductCategory) und einen
Closing Communicative Act (Answer - SelectProductCategory). Diese Closed Question repri-
sentiert eine Liste, aus welcher eine Produktkategorie ausgewihlt werden muss. Die Auswahl der
Produktkategorie wird so lange fortgesetzt, bis die Bedingung productCategory.products>0 des
Then-Zweiges erfiillt ist, d.h. bis eine Produktkategorie, in welcher Produkte vorhanden sind,
ausgewahlt wird.

15

Basis der Arbeit

H OnlineShop <§”€E§;§3&E>
* o name : ESinng — T.I’ISA
- MASTERCARD

H CreditCard

= name : ESiring
= validThru : EString

: number: ELong
credlt&g[i cve : Elnt

= provider : CCProvider

0.% carts
H ShoppingCar

0.* categories

H ProductCategory
= name : EString
o description : EString

]

0. products

0.
* 0.7 ; E Address
QD"P p;od$cts products bills " bilingAddress 0.fT= name : ESting
= name éc:st;:g 0.” - Q Bill - = street: EString
o price : EDouble products ""—'—E}-E ElifygclnEdSetr:irFStrmg
= description : EString deliveryAddress| _ couﬁtry'ESgtring

Abbildung 2.7: Domain of Discourse-Modell Shop

Dann fiihrt der Kommunikationsablauf iiber den Then-Zweig zur Relation Background. Hier wird
zum Einen iiber den Communicative Act Informing die Produktkategorie angezeigt, zum Ande-
ren werden durch die ClosedQuestion - AskForProduct die Produkte der gewidhlten Katego-
rie angezeigt, von denen eines durch Answer - SelectProduct ausgewdhlt wird, welches in den
shoppingCart gegeben wird. Dadurch ist der Then-Zweig des zweiten IfUntil erfiillt und diese
prozedurale Relation ist beendet. Dann wird im ersten IfUntil iiberpriift, ob die Bedingung sei-
nes Then-Zweiges shoppingCart.count (products)>0 erfiillt ist, d.h. ob ein Produkt ausgewdhlt
wurde und somit im shoppingCart gespeichert ist. Ist dies nicht der Fall, so werden ein weite-
res Mal die Produktkategorien angezeigt und nach deren Auswahl die Produkte dieser Kategorie,
solange bis ein Produkt ausgewdhlt wurde.

Sobald ein Produkt ausgewdhlt wurde, springt der Kommunikationsablauf zur prozeduralen Re-
lation Joint. Um diese zu erfiillen, miissen die drei gleichwertigen Fragen, nach der Kreditkarten-
nummer, der Rechnungs- und Zustelladresse beantwortet werden. Hierbei handelt es sich um Open
Questions, welche eine Eingabe z.B. in ein Textfeld erfordern.

Nach Eingabe dieser Daten ist das Joint beendet, damit auch der Then-Zweig und das IfUntil. Da
das IfUntil den Root-Node darstellt, ist somit der gesamte Diskurs beendet. Dadurch wird entweder
der gesamte Kommunikationsablauf beendet, oder, falls dieser Diskurs eine inserted sequence in
einem anderen Diskursmodell darstellt, in diesem der Kommunikationsablauf weitergefiihrt.

Anhand der Transformationsregeln wird dieses Kommunikationsmodell in ein Structural UI-Modell
transformiert. Dieser Prozess wird anhand der Regel in Abbildung 2.8 exemplarisch gezeigt. Das
Adjacency Pair mit Question und Answer stellt hierbei das Suchmuster dar. Wird es gefunden,
so wird ein Panel mit den entsprechenden Objekten erstellt.

Dazu werden alle Diskurselemente auf der Suche nach einem Adjacency Pair durchlaufen. Wird
eines gefunden, so wird iiberpriift, ob an diesem dem Suchmuster entsprechend eine Closed Que-
stion und eine Answer héngt, wie in Abbildung 2.8 unter Discourse ClosedQuestion Discourse

16

Basis der Arbeit

ersichtlich. Daraufhin werden ein List Widget, der Button Select und das Panel ListPanel mit all
ihren Unterstrukturen im Structural UI-Modell kreiert.

[=)== Rule Basic ClosedQuestion
=] Lﬁ Discourse ClosedQuestion Discourse
=@’ Adjacency Pair .=
%! Closed Question .* (CQ1)
ZL Answer . (ACQ1)
= | Panel ClosedQuestion
=) Label Anonymous
=-[2f List widget {0} Closed Question List
EH Grid Layout Data 1
= Button Select
[| Panel ListPanel
B Grid Layout 0
FH Grid Layout 2

Abbildung 2.8: Regel fiir eine Closed Question

Dieser Prozess wird fiir alle Diskursmodellelemente durchgefiihrt und fiihrt zu einem Structural
UI-Modell. Durch die oben beschriebene Transformationsregel wird im Structural UI-Modell ein
Output Widget kreiert, welches in einem weiteren Zyklus von einer anderen Regel durch das Label
ersetzt wurde, wie in Abbildung 2.9 dargestellt. Dargestellt ist das gesamte Structural UI-Modell,
wobei nur der Ausschnitt, welcher von der oben genannten Regel generiert wurde, entfaltet ist,
um die Details zu zeigen.

= [H Choice Shopping
E Frame Shopping 1
= E Frame Shopping 2
EH Grid Layout Data 1
=R W=} Choice BasicIflntilPanel PaymentCondition
EH Grid Layout Data 0
= [H Choice BasicIfUntiPanel ProductcategoriesCondition
FH Grid LayoutData 0
=[] Panel ClosedQuestionsmall CQ_OfferProductCategaries
EH Grid Layout Data 0
#5) Label Heading AskForProductCategory
=[] List Widget CQ_ListFoldout AskForProductCategary
%] style foldouttist
B Grid Layout Data 1
%0 Label nameLabel
43 Label descriptionLabel
B Grid Layout 0
(= Button CQ_Button AskForProductCateqgory
EH Grid Layout 3
|| Panel Title New Mode
B Grid Layout 0
Tab Control TabControllointSmall JOINT _AskForBilingInfo
EH Grid Layout 0
B Grid Layout 0
B Grid Layout 0

Abbildung 2.9: Structural Ul - Ergebnis aus Closed Question

17

Basis der Arbeit

Von diesem Structural UI-Modell ausgehend ist es nun moglich User Interfaces zu generieren.
Dies konnte wie in den Abbildungen 2.10, 2.11 und 2.12 aussehen. Fiir eine andere Plattform,
z.B. eine Applikation fiir ein Mobiltelefon, kann aus demselben Structural Ul ein anderes User
Interface generiert werden.

i | N

[£x] OnlineShop = (B 2

OnlineShop

Preductcatogorios Description
Hardware | CPU. Harddisic,
Kitthenware] Dishwasher, Cooker, ...
Mobile Phone] Nokia, S3amsung, ...
Software | winxp, ofice 2007, ..
T and Video] Videcrecorder, FlatTV, ...

Abbildung 2.10: Online Shop - Auswahl der Produktkategorie [Ran0§]

[[&] OnlineShop S

OnlineShop

List of Products Description Price
[Manitar | Descrintion Monitor 9999 9
[GPU | Descrigtion Festplatte 149.9
[Harddisk | Descripton Festplatte 99.9
[Graphic card] Description grafitcicarte 19.9

Abbildung 2.11: Online Shop - Produktauswahl [Ran0§|

2.3 Modellintegritatskriteriumspriifung

Durch die Uberpriifung eines Modells anhand definierter Giiltigkeitsbedingungen kénnen Fehler
in Modellen gefunden werden.

18

Basis der Arbeit

[£ OnlineShop |i|ﬂ|£_"-hj1
OnlineShop

CCInfos BilingAddress | DeliveryAddress |
Creditcard informatior:

Wame: David Raneburger

ValicThru

Number: 0
cve: 0

Provider MASTER.CARD -

Submit

Abbildung 2.12: Online Shop - Eingabe der Kundendaten [Ran08]

Das Wort Validierung hat seine Wurzeln im englischen walid, was sich mit giiltig oder zuléssig
iibersetzen ldsst, auch der Begriff plausibel konnte gebraucht werden. Die Giiltigkeit von Varia-
blen ist leicht ersichtlich. Zum Beispiel darf eine Variable welche das Alter eines Menschen in
Jahren beschreibt, keine negativen Werte annehmen und Werte iiber 120 sind wohl unrealistisch.
Schwieriger ist die Definition von Giiltigkeit in Modellen. Hier miissen die Objektbeziehungen be-
trachtet werden. Nehmen wir zum Beispiel ein Objekt Baum, welcher 0..* Frucht-Objekte besitzt.
Wenn diese Friichte vom Typ Apfel oder Kirschen sind erscheint es plausibel, sind diese Friichte
vom Typ Hamburger liegt wahrscheinlich ein Fehler vor.

Der Begrift Validation wird in einigen Wissensgebieten unterschiedlich verwendet. Dies liegt wohl
in der allgemeinen Verwendung von valid als giiltig begriindet. Wahrend im EMF valid bzw.
Validation fiir die Giiltigkeitspriifung der Modelle hinsichtlich deren Modellintegrititskriterien
verwendet wird, hat er im Software-Engineering eine ganzlich andere Bedeutung.

Im Software-Engineering ist der Begriff Validation eng mit dem Begriff Verifikation verwandt.
Beide beschiftigen sich mit der Uberpriifung auf Richtigkeit. Man kann sagen, Validation stellt
ein ,,building the right system* dar, wihrend Verifikation ein ,,building the system right* bezeichnet.
Eine dezidierte Unterscheidung gestaltet sich manchmal insofern als schwierig, als Validation und
Verifikation versuchen die Richtigkeit sicherzustellen, wobei Uberlappungen maéglich sind, wodurch
oft einfach der Begriff ,Valdiation und Verifikation“ benutzt wird.

So steht man hier vor dem Problem, dass die Entwicklung von Modellintegritatskriterien eine
Modellierung im Rahmen eines Software- Engineerings darstellt und im Rahmen des EMF imple-
mentiert wird. Wobei in diesen beiden Gebieten der Begriff valid bzw. Validation eine génzlich
andere Bedeutung besitzt. Darum wird in der vorliegenden Arbeit so weit als méglich auf diese
Begriffe verzichtet und stattdessen Synonyme aus den beiden Doménen verwendet.

Als giiltig wird ein Modell bezeichnet, wenn es den Integritdtskriterien seines Metamodelles geniigt.
Diese Integritéatskriterien werden im Software- Engineering gefunden und miissen vom schlussend-
lich daraus entwickelten System erfiillt werden. In [KKHHO04] ist ein Tool zur Uberpriifung der
Ubereinstimmung von Requirements mit deren Metamodell beschrieben.

19

Basis der Arbeit

Zur Priifung von Modellintegritatskriterien gibt es im EMF ein Validation Framework, durch des-
sen Verwendung der Fokus auf die Entwicklung von geeigneten Constraints konzentriert werden
kann. Constraints sind Einschréankungen bzw. Bedingungen, denen Objekte geniigen miissen, um
als richtig bzw. giiltig angesehen zu werden. Oder anders gesehen wird richtig oder giiltig durch
das Erfiillen dieser Kriterien definiert. Zur Implementierung von Constraints gibt es drei Mog-
lichkeiten, welche von EMF unterstiitzt werden. Diese haben unterschiedliche Vor- und Nachteile
und unterscheiden sich in deren Méchtigkeit und in ihrem Implementierungsaufwand.

1. ECore-Modell
Beim Durchfiihren einer Modellpriifung im EMF wird auch iiberpriift, ob ein Modell den
Definitionen seines Metamodelles geniigt. Anwendung findet dies z.B. bei der Definition von
Kardinalitdten oder der Definition einer Eigenschaft als einzigartig durch das Schliisselwort
unique.

Der Vorteil liegt darin, dass die Implementierung derartiger Constraints durch wenige Klicks
erreicht werden kann.

Der Nachteil ist, dass sich damit nur sehr wenige Objekteigenschaften {iberpriifen lassen
und jede Anderung Auswirkungen auf die gesamte Software haben kann, welche auf diesem
Modell basiert.

2. Object Constraint Language (OCL)
Fir die Implementierung der Constraints bietet sich OCL an, welche UML um die M6g-
lichkeit erweitert Giiltigkeitsbereiche von Objekteigenschaften zu iiberpriifen und ungiiltige
Objektbeziehungen zu erkennen.

Der Vorteil von OCL liegt vor allem in der Ubersichtlichkeit und der geringen Linge von
OCL- Constraints. Damit lassen sich Constraints in wenigen Zeilen realisieren, wodurch diese
iibersichtlich und schnell zu erstellen sind.

Ein Nachteil liegt in den kaum vorhandenen Debug-Moglichkeiten, welche Eclipse und EMF
fiir OCL mit sich bringen. Viel schwerer wiegt allerdings, dass OCL keine imperative Pro-
grammiersprache darstellt und keine Méglichkeit der Programmflusssteuerung bietet. Des
Weiteren ist beachtenswert, dass nur seiteneffektfreie Funktionen verwendet werden kénnen,
da durch die Uberpriifung die {iberpriiften Objekte nicht verindert werden diirfen.

3. Java
Fiir die Uberpriifung komplexerer Objektbeziehungen besteht die Moglichkeit, Constraints
in Java zu implementieren.

Der Vorteil hierbei ist, dass der gesamte Java-Sprachumfang mit all seinen Mdglichkeiten
zur Verfiigung steht.

Dies wird um den Preis erkauft, dass Java- Constraints im Allgemeinen linger sind und fiir
deren Erstellung mehr Zeit aufgewendet werden muss.

2.3.1 ECore

ECore-Modelle stellen die Metamodelle des EMF dar. Diese beschreiben wie die Modellelemente
auszusehen haben und welche Figenschaften diese besitzen.

Das Eclipse Modeling Framework (EMF) ist ein Modellierungs Framework und Codegenerierungs
Tool zur Erstellung von Applikationen. Ausgehend von einer Modellspezifikation in XMI stellt es

20

Basis der Arbeit

Werkzeuge und Laufzeitunterstiitzung zur Verfligung, welche benétigt werden, um ein Set von
Javaklassen fiir das Modell zu generieren. Es unterstiitzt den Entwicklungsprozess durch einen
Editor und Adapterklassen, welche das Betrachten und Bearbeiten eines Modells erlauben. [4]

Ein Domain-Modell reprasentiert die Daten, welche in einem Programm verwendet werden sollen.
Einen generellen Vorteil bietet die Modellierung der Daten unabhéngig von der Applikationslogik.
Dazu bietet sich das Architekturmuster Model- View-Control (MVC) an, in welchem die Software
Entwicklung in drei Einheiten strukturiert wird: Datenmodell, Darstellung und Steuerung.

Mit EMF koénnen derartige Domain-Modelle modelliert werden. Hierbei wird zwischen Metamo-
dell und dem eigentlichen Modell unterschieden, wobei das Metamodell die Struktur des Modells
beschreibt und das eigentliche Modell eine Instanz dieses Metamodelles ist. Diese Modelldefinition
wird in XML Metadata Interchange (XMI) implementiert und kann auf Basis von UML, XML
Schemata, oder einem XMI Dokument definiert werden. Sobald das EMF-Metamodell spezifiziert
ist, konnen daraus entsprechende Java-Klassen generiert werden. [6]

Erstelung

_BCOTE ecoredian
Texiuelle Graphische
Reprasentation Reprasentation

Konfiguration

sgenmaodel
Korfiguration der
Klassangenerismng

Generierte Java-Klassen

Aimpl
Implementisrung Cora
der Klassen

Abbildung 2.13: EMF Modell Generierung [7]

kil
Factones,
Seralisizrung,

Zu jedem EMF-Modell gibt es zwei Metamodelle, das ECore-Modell und das Genmodel-Modell.

21

Basis der Arbeit

Das ECore-Modell enthélt die Information iiber die definierten Klassen. Es besteht auch die M&g-
lichkeit das ECore-Modell in einem graphischen ECore-Diagrammeditor zu zeichnen und zu editie-
ren. ECore-Modell und ECore-Diagramm besitzen denselben Informationsgehalt. Im Genmodel-
Modell konnen zusétzliche Parameter und Informationen fiir die automatische Codegenerierung
spezifiziert werden.

In Abbildung 2.13 nach [7] ist der Ablauf der EMF Modell Generierung veranschaulicht.

Ein ECore-Modell kann, wie in [6] dargelegt, aus den folgenden vier Datentypen bestehen:

e EClass: Reprisentiert eine Klasse, welche wiederum Attribute und Referenzen enthalten
kann.

e EAttribute: Représentiert ein Attribut, welches einen Namen und einen Typ hat.
e FReference: Représentiert ein Ende einer Assoziation zwischen zwei Klassen.

e EDataType: Reprisentiert den Typ eines Attributes, wie z.B. int, float. Es sind aber auch
komplexe Java-Datentypen erlaubt.

Beim Starten einer Modellintegritatspriifung im EMF wird iiberpriift, ob ein Objekt den Defini-
tionen in seinem Metamodell geniigt. Hier lisst sich z.B. durch die Eigenschaft Upper Bound und
Lower Bound einstellen, wie oft ein Objekt vorkommen darf, und durch Setzten des Lower Bound
auf 1 erzwingen, dass dieses vorhanden sein muss. Durch die Eigenschaft Unique wird festgelegt,
dass der Wert einer FEigenschaft in allen Instanzen dieser Klasse unterschiedlich sein muss. Durch
die Definition eines Default Value Literals kann einem Objekt ein Default-Wert gegeben werden.
Dieser wird dann bei der Objekterstellung automatisch eingetragen.

Zu beachten ist, dass die Einfithrung von Constraints iiber die Metamodelle Auswirkungen auf
die gesamte Software haben kann, sodass dies nur nach reiflicher Uberlegung geschehen sollte. Bei
Anderungen an diesen empfiehlt sich ein anschliekender Regressionstest um sicherzustellen, dass
durch die Einfiihrung eines Constraints nicht die Funktionsweise der Software beeintrichtigt wird.
Dies kann durch die Verwendung von Objekten in verschiedenen Kontexten passieren.

Das Constraint input widget must have event, welches in Kapitel 3.3.4 ausfiihrlich erldutert
ist, stellt ein Beispiel fiir einen Fall dar, in welchem die Implementierung eines Constraints iiber das
ECore-Modell nicht moglich ist. Da ECore-Modell- Constraints nicht abgeschaltet werden konnen
und ein Input Widget im Regelmodell anderen Bedingungen geniigen muss als im Structural Ul-
Modell, ist hier eine Realisierung als ECore-Modell- Constraint nicht moglich.

2.3.2 OCL

Die Object Constraint Language (OCL) stellt eine Erweiterung von Unified Modeling Language
UML dar, mit welcher Einschrankungen fiir UML-Modelle definiert werden konnen.

1997 wurde Unified Modeling Language (UML) als Standard fiir objektorientierte Analyse und De-
sign eingefithrt. Durch die zahlreichen darin spezifizierten Diagramme lassen sich auf einheitliche
Weise Objektstrukturen beschreiben und Verhalten modellieren. Damit lassen sich die Konstrukte
eines Systems visualisieren, spezifizieren und dokumentieren. [Son03|

22

Basis der Arbeit

Es konnen allerdings nicht alle Aspekte eines Modells mit UML modelliert werden. Speziell zu-
sitzliche Einschrinkungen fiir Objektbeziehungen und Objekteigenschaften, werden oft in natiir-
lichsprachlicher Form hinzugefiigt. Die Praxis hat gezeigt, dass dies hiufig in Zweideutigkeiten
der Formulierung resultiert. Um dies zu verhindern wurden schon frither formale Sprachen de-
finiert, welche allerdings ein groftes mathematisches Hintergrundwissen erforderten und fiir den
durchschnittlichen UML-Modellierer ein Hindernis darstellten. Um diese Liicke zu fiillen, wurde
die Object Constraint Language (OCL) entwickelt, als formale Sprache, welche dennoch einfach
zu lesen und zu schreiben ist. [OMGO06]

Dies fiihrt dazu, dass Zweideutigkeiten vermieden werden kénnen, Einschrankungen automatisch
iiberpriift werden kénnen und eine automatische Codegenerierung moglich wird.

Es folgt eine kurze Zusammenfassung der wichtigsten Eigenschaften und Einschréankungen, welche
beim Arbeiten mit OCL beachtet werden miissen.

OCL basiert auf einer dreiwertigen Logik. Das heifst, Ausdriicke werden auf die Werte true, false,
undefined abgebildet. Undefined ist dabei der Riickgabewert einer Operation, wenn diese fehl-
schldgt. Dies kann zum Beispiel passieren durch den Zugriff auf ein Element einer leeren Menge,
Fehler beim Typecasting oder dem Aufruf einer Funktion auf einem null-Objekt. Es fiihrt dazu,
dass dreiwertige Wahrheitstabellen, wie in Tabelle 2.2 dargestellt, bendtigt werden.

not and or

Al =
a0 =

Tabelle 2.2: Wahrheitstabellen - dreiwertige Logik (0:false 1:true ?:undefined) [Son03]

Zu beachten ist, dass OCL keine Programmiersprache darstellt. Deshalb ist es nicht moglich Pro-
grammlogik zu implementieren oder Programmflusskontrolle zu realisieren. [OMGO06] Zum Bear-
beiten und Uberpriifen von mengenwertigen Typen, sogenannten Collections, stehen allerdings
Iteratoren zur Verfiigung, welche diese einer Uberpriifung zuginglich machen.

Das Aufrufen von in Klassen definierten Methoden ist mdglich, es diirfen allerdings nur solche
verwendet werden, welche seiteneffektfrei sind. [OMGO6|

2.3.3 Java Constraints

Einschrankungen fiir Modelle kénnen auch in Java implementiert werden, wobei es durch die
Maéchtigkeit der Sprache mehrere Moglichkeiten gibt diese zu realisieren. Hier werden einige dieser
Konzepte betrachtet, welche sich fiir diese Arbeit als relevant erwiesen.

Es gibt zahlreiche Moglichkeiten in Java Constraints zu implementieren, wie in [FGOGO07] dar-
gelegt. Prinzipiell wire es moglich alle Constraints direkt im Quellcode zu realisieren z.B. durch
bedingte Anweisungen. Dies hat allerdings die folgenden Nachteile:

1. Die Uberpriifung eines Constraints an mehreren Stellen im Programm kann zu einer inkon-
sistenten Implementierung fithren.

23

Basis der Arbeit

2. Des Weiteren ist es schwierig zu verifizieren, dass Constraints, welche in einem Analyse und
Design Prozess gefunden wurden, ihre Umsetzung in den Quellcode gefunden haben.

3. Constraints konnen auch Kontrakte zwischen verschiedenen Systemmodulen betreffen. Eine
implizite Constraini-Definition unterstiitzt z.B. nicht das Design-by-Contract Prinzip. Dies
ist ein Konzept aus dem Bereich der Softwareentwicklung mit dem Ziel, das reibungslo-
se Zusammenspiel einzelner Programmmodule durch die Definition formaler Vertrige zur
Verwendung von Schnittstellen zu ermoglichen. Diese Vertrige gehen {iber eine statische
Definition hinaus [8].

4. Manche Systeme kénnen eine explizite Behandlung der Integritatsbedingungen zur Laufzeit
benotigen.

Die Implementierung einer Constraint-Uberpriifung in dedizierten Java-Klassen ist ein Ansatz,
welcher den Code zur Modellintegritdtskriterumspriifung von dem der Applikationslogik trennt.
Der Constraint-Code kann hierbei in wvalidate()-Methoden vorliegen, welche mit entsprechenden
Argumenten aufgerufen werden, wann immer ein spezielles Constraint iberpriift werden soll. Die-
ser Ansatz erfordert einen Mechanismus, welcher die validate()-Methode zum passenden Zeitpunkt
aufruft. [FGOGOT|

Eine derartige Kapselung des Constraint-Codes in unterschiedliche Klassen erlaubt eine flexible
Handhabung der Integrititsbedingungen. Diese kénnen in einem Constraint-Repository registriert
werden. Wann immer bendtigt kann dieses Repository nach Constraints durchsucht werden, basie-
rend auf unterschiedlichen Kriterien, wie zum Beispiel die Klasse des aufgerufenen Objektes oder
die Signatur der aufrufenden Methode. Ein derartiges Constraint-Repository erlaubt des Weiteren
das Hinzufiigen, Entfernen, Aktivieren und Deaktivieren von Constraints zur Laufzeit. [FGOGO07]

2.3.4 Validation Framework

Das Validation Framework von EMF unterstiitzt die Entwicklung von Constraints und die Reali-
sierung einer Modellintegritdtspriifung, indem es die Kapselung der Constraints in eigene Klassen
erlaubt und ein Constraint- Repository bietet. Durch die Verwendung dieses Frameworks kann der
Fokus auf die Definition von geeigneten Constraints konzentriert werden.

Durch einen Fztension Point sieht ein Plugin eine Registrierung vor, an der sich Instanzen vor-
merken lassen kénnen, um ein Plugin zu ergdnzen. Die registrierende Stelle ist dabei der Ezxtension
Point und die Erweiterung die Extension. Wird in einem Plugin eine Stelle erreicht, die ergéanzt
werden kann oder soll, so wird {iberpriift ob Instanzen registriert sind und, wenn dies der Fall ist,
wird diese Funktionalitét ausgefiihrt. Damit l4sst sich ein Plugin erweitern, ohne dass es verdndert
werden muss. [HS08]

Im Folgenden eine Zusammenfassung von [5] iiber die Klassen und Extension Points, welche bei
der Implementierung von Constraints mit diesem Framework zur Verfiigung stehen und die Mog-
lichkeiten, die diese eréffnen.

Der Extension Point org.eclipse.emf.validation.constraintProviders wird verwendet, um
Constraints bereitzustellen. Es gibt zweil Arten von Constraints: statische und dynamische. Stati-
sche Constraints werden in der Datei plugin.xml deklariert und kénnen in hierarchisch strukturier-
te Kategorien gruppiert werden. Diese Constraint Provider zielen auf ein oder mehrere EPackages
ab, welche durch ihre namespace-URI identifiziert werden. Dynamische Constraints zielen auf

24

Basis der Arbeit

Situationen ab, in denen Constraints nicht statisch deklariert werden kénnen, z.B. wenn diese
in Modellen oder anderen Ressourcen definiert sind. Dynamische Provider deklarieren eine Klas-
se, welche das Interface IModelConstraintProvider implementiert. Diese Klasse sorgt dafiir, dass
Constraints zur Verfiigung stehen, wenn entsprechende Situationen diese auslsen.

Uber den Estension-Point org.eclipse.emf.validation.traversal kénnen die model-traver-
sal-Algorithmen angepasst werden. Dies ist nur fiir Batch-Validation relevant, da in der Live-
Validation diese nicht ausgefiihrt werden und beschreibt, wie ein Teilbaum, ausgehend von der
Auswahl durch den Benutzer, durchlaufen wird. Falls kein anderer Algorithmus angegeben wird,
wird iiber den gesamten Teilbaum mit der Funktion eAl11Contents() iteriert.

Durch den Fztension-Point org.eclipse.emf.validation.constraintParsers konnen weitere
Constraint-Sprachen eingebunden werden. Das Validation Framework unterstiitzt von Haus aus
zwei Sprachen: Java und OCL.

Der Eztension-Point org.eclipse.emf.validation.constraintBindings erlaubt die Definiti-
on von client contexts, welche die Objekte definieren, auf denen eine Modellpriifung durch-
gefiihrt werden soll und bindet diese an Constraints. Der client context kann durch einen
enablement-Ausdruck oder durch ein spezielles selector-Element, welches in einer Selector-
Klasse definiert wird, gebildet werden. Dabei werden alle Modellelemente, welche die spezifizierten
Bedingungen erfiillen, dem client context hinzugefiigt. Der client context kann an Cons-
traints oder Constraint-Kategorien gebunden werden, wobei in zweitem Fall jedes Constraint in
der Kategorie an den context gebunden wird. Dies hat den Vorteil dass neue Constraints in einer
Kategorie automatisch an den context gebunden werden, sogar wenn das Constraint in einem
Plugin definiert wurde, welches diesen context nicht kennt.

Der Extension-Point org.eclipse.emf.validation.validationListeners wird verwendet, um
Validation Listener fir das Validation Service org.eclipse.emf.validation.service.Model
ValidationService zu definieren. Das Validation Service benachrichtigt diesen Listener jedes-
mal, wenn eine Validation vorgenommen wurde. Dies kann dazu verwendet werden, wenn client-
Plugins Informationen iiber die Validation bendtigen, bevor sie geladen werden. Dieser Listener
kann auch im Code zur Laufzeit durch die Methode ModelValidationService.addValidation
Listener () registriert werden.

Das ModelValidationService koordiniert den Aufruf der Validation. Es definiert eine single-factory
Methode zur Implementierung des IValidatior fiir die Batch- und Live-Fvaluation-Modi. Die
Validatoren priifen ein oder mehrere Objekte auf einmal. Welche Objekte als Input akzeptiert
werden, héingt vom Evaluierungsmodus ab. Je nach Konfiguration melden sie die erfolgreiche Uber-
priifung von Constraints oder auch das Auftreten von Fehlern, wobei diese Ergebnisse vom Typ
IValidationStatus sind. Der ILiveValidator priift EMF-Notifications, wihrend der IBatch-
Validator EObjects priift und eine Fortschrittsanzeige unterstiitzt.

Das Framework stellt mit org.eclipse.emf.validation.xml.IXmlConstraintParser eine Im-
plementierung eines XML-Constraint-Parser-API zur Verfiigung, welche XML-Constraints in
OCL unterstiitzt. Die Klasse OclConstraintParser ist eine Constraint Parser Implementierung,
welche Instanzen der Klasse OclModelConstraint aus XML-Constraint-Deskriptoren erstellt. Unter
Verwendung der Query-Klasse werden Modellelemente gegen OCL- Constraint-Ausdriicke getestet.

Des Weiteren ist es méglich die Modellpriifung direkt aus dem Code aufzurufen.

ValidationClientSelector.setRunning(true) ;

25

Basis der Arbeit

IBatchValidator validator = (IBatchValidator)
ModelValidationService.getInstance() .newValidator(EvaluationMode.BATCH) ;

validator.setIncludeLiveConstraints(true);

IStatus status = validator.validate(projectSpace);

ValidationClientSelector.setRunning(false);

In status ist das Ergebnis der Priifung enthalten, welches vom Editor benutzt wird, um die Regel-
verletzungen in der Problems-View anzuzeigen und entsprechende Fehlermeldungen auszugeben.

3]

2.3.4.1 OCL im EMF

OCL- Constraints werden direkt in die Datei plugin.xml geschrieben oder in einer eigenen Datei
abgelegt, mit einem Verweis auf diese in der plugin.xml.

Constraints konnen auch fehlerhaften Code enthalten. Zur Laufzeit werden Fehler, die in OCL-
Constraints auftreten, nicht zuriickgemeldet, einzig ein Hinweis des Typs Informing weift darauf
hin, dass ein Fehler aufgetreten ist und dieses Constraint deaktiviert wurde. Dieses ldsst sich
auch nicht wieder aktivieren und nach einer Anderung am Constraint muss die Testinstanz neu
gestartet werden, um dieses erneut auszufiihren. Damit ist eine relativ unkomfortable Variante des
Erstellens gegeben. Besser ist es Constraints in der OCL-Konsole zu entwickeln und die fertigen
Constraints dann in die Datei plugin.xml einzufiigen.

Ein Debuggen von OCL-Constraints kann anhand der Fehlermeldungen in der Konsole, nach
aktivieren der Traces in der Runtime-Konfiguration, durchgefiihrt werden.

2.3.4.2 OCL-Konsole

Mit der OCL-Konsole konnen OCL- Constraints eingegeben und auf den im Editor ausgewéhlten
Objekten ausgefiihrt werden.

Die Konsole unterstiitzt Code-Completion, indem es fiir Objekte, die in diesem enthaltenen Ob-
jekte anzeigt und fiir Objekte die seiteneffektfreien Methoden angibt, welche in OCL verwendet
werden diirfen. Dies stellt eine wesentlich bequemere Form der Erstellung von OCL-Constraints
dar, da diese Funktionalitit im Plugin-Editor nicht unterstiitzt wird.

Die OCL-Konsole ist im OCL Beispiel enthalten. Sie kann durch Window — Show View — Console
und Auswahl von ,Interactive OCL“ gestartet werden.

Als genereller Ansatz bietet es sich an, zuerst die zu iiberpriifenden Objekte zu sammeln und in
einem zweiten Schritt dann auf diesen Collections die erforderlichen Integritétspriifungen durch-
zufiihren.

26

3 REALISIERUNG VON
MODELLINTEGRITATSPRUFUNGEN FUR DAS
UCP-FRAMEWORK

In diesem Kapitel werden zuerst die angewandten Strategien zur Implementierung dargelegt. Dann
folgt eine Beschreibung der Implementierung der Modellintegritdtspriifungs- Plugins und der im-
plementierten Constraints. Abschliefend werden die Ergebnisse der Evaluierung prisentiert.

3.1 Konzepte und Strategien

Aus den in Kapitel 2.3.4 genannten Moglichkeiten fiir die Implementierung im Rahmen des EMF
Validation Frameworks liefen sich einige Strategien fiir die Realisierung ableiten.

Bei der Implementierung wurden nur Bafch-Constraints verwendet und die Moglichkeit von Live-
Constraints aus mehreren Griinden vernachléssigt. Live- Constraints bendtigen einen hoheren Rea-
lisierungsaufwand, da fiir jedes Constraint definiert werden muss, durch welche Benutzeraktionen
im Editor eine Integrititspriifung gestartet wird. Fiir Transformationsregel- und Structural Ul-
Constraints sind Live-Constraints ohnehin unnétig, da diese Modelle nicht dazu gedacht sind in
einem graphischen Editor bearbeitet zu werden. Im Diskurseditor zeigt sich, dass im Entwick-
lungsprozess eines Diskursmodells nahezu jede Aktion zahlreiche Fehler auslosen wiirde. So wiirde
das Hinzufiigen einer prozeduralen Relation Joint dazu fithren, dass dieses zum Erstellungszeit-
punkt keine Links zu anderen Objekten hat und entsprechende Fehlermeldungen auslésen. Diese
Links werden erst in den nichsten Arbeitsschritten hinzugefiigt. Aus diesem Beispiel ist ersichtlich,
dass das Erstellen und Bearbeiten von Diskursmodellen gleichsam immer eine zwischenzeitliche
Verletzung der Modellintegritit darstellt. Erst wenn das Modell fertig erstellt ist oder wenn im
Entwicklungsprozess einzelne Objekte iiberpriift werden sollen, ist eine Prifung sinnvoll. Hierbei
ist dann auch die Fehleranzahl signifikant geringer und auf solche beschrénkt, welche tatsichlich
einer Behandlung bediirfen und nicht im nichsten Bearbeitungsschritt ohnehin behoben werden
wiirden. Des Weiteren ist die Ausfithrung der Live- Validation von den Benutzeraktionen abhingig,
je nach Arbeitsstil und benétigten Constraints fithrt dies zu einem unterschiedlich hohen Aufwand
an Rechenleistung und Speicher.

Aus diesen Griinden wurde auf eine Live- Validation verzichtet. Die Uberpriifung der Modelle wird
vom Benutzer gestartet. Auch eine automatische Uberpriifung der Modelle vor einer Modelltrans-
formation ist moglich.

27

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Damit das Modell im Editor sténdig alle Modellintegritatskriterien erfiillt, wire ein anderer An-
satz fiir den Editor von Néten. Dabei wiirde der Benutzer nicht nur einzelne Elemente erstellen,
sondern einen ganzen Zweig, als atomare Aktion kreieren und Modellelemente nicht veréndern,
sondern in andere Elemente transformieren, entsprechend den Modellintegritdtskriterien. Dies
kénnte allerdings die Erstellung eines Modells komplizierter gestalten als die derzeitige Losung.

Fiir die Modellintegritatspriifung von Diskurs-, Structural UI- und Transformationsregel-Modellen
wurde jeweils ein eigener Validation-Adapter implementiert. Dadurch lésst sich jeder Adapter auf
alle Elemente eines Modells anwenden, und der Konfigurationsaufwand bleibt gering.

So weit es sinnvoll und realisierbar war, wurden die vorhandenen Constraints in OCL erstellt,
da deren Entwicklung im Allgemeinen schneller zu bewerkstelligen war als entsprechende Java-
Constraints zu implementieren. Im Folgenden darf daher angenommen werden, dass die konkrete
Implementierung in OCL vorliegt, sofern nicht anders angegeben.

Eine komplette Liste aller implementierten Constraints findet sich in Anhang A. Im Falle von
OCL-Constraints ist deren Code direkt eingefiigt, bei Java- Constraints ist der Name der Klas-
se angegeben, in welcher diese implementiert sind. Des Weiteren ist festgehalten, auf welchen
Objekten diese Uberpriifung ausgefiihrt wird und welche Fehlermeldung durch dieses Constraint
ausgegeben wird, falls die Uberpriifung einen Fehler findet.

Die Reihenfolge der Erklérung im Text weicht von der im Anhang ab, da diese die Darstellung im
Programm wiederspiegelt, welche auf deren Verwendung im Code zugeschnitten ist. Die Erklarung
der Constraints in diesem Kapitel entspricht einem Diskursmodell besser und der logische Ablauf
ist auf diese Art und Weise besser zu veranschaulichen.

3.2 Validation Framework

Das EMF besitzt ein Validation Framework, dessen grundlegende Funktionen bereits in Kapitel
2.3.1 dargelegt wurden. Hier wird nun gezeigt, wie dieses verwendet wurde, um die Modellintegri-
tatspriifung zu realisieren.

3.2.1 Implementierung des Validation Framework

Fiir die Verwendung des Validation Frameworks sind einige Einstellungen notwendig, welche im
Folgenden erlautert werden.

Die Implementierung des EMF Validation Frameworks kann an den folgenden drei Beispielen
studiert werden:

e OCL Example
e General Validation Example

e Validation Adapter Example

Deren Code kann iiber File -+ New — Example — in ein Eclipse-Projekt eingebunden werden.
Um mit diesen Beispielen zu arbeiten, muss auch das Library Ezample eingebunden werden. Von

28

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

diesen Beispielen ausgehend gibt es einige Tutorials im Internet, welche das Einbinden einer Mo-
dellintegritatspriifung in ein eigenes Projekt erleichtern. Anhand von [1] und [2] wurden die beiden
Moglichkeiten der Implementierung studiert und auf deren Basis schlieflich die drei Validation-
Adapter fir die zu priifenden Modelle implementiert.

Der Validation-Adapter implementiert hierbei die Kernfunktionalitdt, welche durch die in dem
General Validation Frample gezeigten Moglichkeiten erweitert wird, in einem Editor ein Kontext
Menii zu erstellen und an die Bediirfnisse anzupassen. Damit kann zum Beispiel die Live- Validation
ein- oder ausgeschaltet werden oder eine Validation des gesamten Modelles gestartet werden. Da
dies nicht benétigt wird, wurde nur der Validation-Adapter verwendet.

Ausgehend vom Validation Adapter Erample muss dazu in der Datei Startup.java die Methode
earlyStartup() modifiziert werden, indem das EXTLibraryPackage durch den Packagenamen
des verwendeten Metamodelles ersetzt wird. Dann muss in der Datei plugin.xml die NS-URI an das
eigene Modell angepasst werden. Nach einer Anpassung der Dependencies und der Imports ist der
Adapter bereit und kann nach Definition von Constraints verwendet und an das Projekt angepasst
werden. Eine ausfiihrliche Anleitung dazu findet sich in [1]. Gestartet wird die Integritatspriifung
durch Rechtsklick auf ein zu priifendes Modellelement in der Baumansicht und Klick auf den
Kontextmeniipunkt Validate.

3.2.2 Validation-Plugins

Die Definition eines Plugins erfolgt in der Datei plugin.xml durch die Konfiguration der extension
points.

Die Constraints werden in der Datei plugin.xml registriert, in Kategorien geordnet und ihrem
Kontext zugewiesen. Dazu stehen zwei Moglichkeiten zur Verfiigung. Man kann die Datei plu-
gin.xml per Texteditor schreiben oder iiber die Ansicht ,extensions” die bendtigten Eigenschaften
in einem graphischen Editor eintragen.

Es werden zwei extension points bendtigt:

extension point= ‘‘org.eclipse.emf.validation.constraintBindings‘’
extension point= ‘‘org.eclipse.emf.validation.constraintProviders

In den constraintBindings, siehe Abbildung 3.1, wird zuerst der clientContext definiert, wobei
im Feld enablement festgelegt wird, fiir welche Objekte eine Modellintegritdtsprifung, mit den,
im constraintProvider definierten Constraints, durchgefiihrt wird. In diesem Fall muss es eine
Instanz vom Typ EObject sein, welche in dem im Feld value angegebenen namespace vorkommt.

Anschliefend werden dem Context im Feld binding Constraints zugewiesen. Dies kann, wie im
Beispiel gezeigt, durch die Angabe einer oder mehrerer Constraint-Kategorien geschehen. Genau-
so ware auch das Eintragen von einzelnen Constraints moglich. Die categories sind in einem
hierarchischen Baum organisiert, wobei die einzelnen Hierarchieebenen durch einen Schrigstrich
getrennt werden. Wird eine Kategorie angegeben, sind auch automatisch alle Unterkategorien an
den Kontext gebunden.

Im extension point constraintProviders, sieche Codebeispiel Abbildung 3.2, werden die Ka-
tegorien definiert, in welche die Constraints anschliefend eingeteilt werden. In der Id wird der
gesamte Pfad eingetragen, unter welchem diese Constraint-Kategorie spiter in den Preferences
der Testinstanz zu finden sein wird.

29

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

<eXtension point="org.eclipse.emf.validation.constraintBindings">
<clientContext id="org.ontoucp.discourse.validation.adapter™>
<enablement>
<and>
<instanceof walue="org.eclipse.emf.ecore.ECkhiect"/>
<test
property="org.eclipse.emf.validation.examples.adapter.ePackage™
value="http://www.ontoucp.org/discourse,/1.1.0"/>
</and>
</enablement>
</fclientContextcr
<binding
context="org.ontoucp.discourse.validation.adapter™
categorv="ontoucp-discourse" />
</extension»

Abbildung 3.1: Extension Point - Constraint Bindings

Im Constraint Provider wird zuerst der namespace definiert, auf welchem das Constraint target
sensitiv ist. Im Punkt Constraints werden Unterkategorien definiert, wo die im weiteren Verlauf
implementierten Constraints einzuordnen sind. Es besteht auch die Moglichkeit Constraints als
mandatory zu definieren, was dazu fiihrt, dass diese immer ausgefiihrt werden. Dann erfolgt die
eigentliche Constraint Definition:

e id
Jedes Constraint bendtigt eine eindeutige Id.

e name
Dieser spezifiziert, unter welchem Namen es spiter in den Preferences der Testinstanz an-
gezeigt wird.

e lang
Fiir ein jedes Constraint wird unter lang die Sprache definiert, in welcher das Constraint
implementiert ist. Dies wird im Allgemeinen entweder OCL oder Java sein.

e class
Im Fall von Java- Constraints muss die Klasse angegeben werden, in welchem sich der Cons-
traint-Code befindet. Bei OCL-Constraints fehlt diese.

e mode
Im Feld mode wird angegeben, ob es sich um ein Live- oder Batch-Constraint handelt. Live-
Constraints werden zur Laufzeit iberpriift, wenn eines der angegebenen Features aufgerufen
wird. Batch-Constraints werden nach dem expliziten Aufruf der Modellintegrititspriifung
iberprift.

e severity
Es gibt mehrere severity-Grade, durch welche angeben wird, wie schwerwiegend die Ver-
letzung dieses Constraints ist. Diese reichen von ERROR iiber WARNING bis INFO.

e statusCode
Schlussendlich muss fiir jedes Constraint ein statusCode definiert werden.

30

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

<extension
point="org.eclipse.emf.validation.constraintProviders™s>
<category
name="Discourse Model Constraints"™
id="ontoucp-discourse/discourse">
Constraints for walidating discourse models

</category>
<constraintProvider cache="trues">
<package namespacelUri="http://www.ontoucp.org/discourse,/1.1.0"/ >

<constraints categories="ontoucp-discourse/warnings">
<constraint
id="org.ontoucp.discourse.validation.constraintc0lQl"™
lang="0CL"
mode="Batch"
name="name not empty"
severity="WARNING"
statusCode="0101">
<mesSsage
{0} has no name
</message>
<target class="Communicativelcot™/>»
<target class="Discourse"/>
<descriptionr»element should have a name</description>
<! [CDATL]
name.size() > 0

| =4
</constraints>
«/oconstraincs>
</constraintFroviders>

< /extensiony

Abbildung 3.2: Extension Point - Constraint Provider

e message
In message wird fiir jedes Constraint die auszugebende Fehlermeldung definiert. {0} wird
hier verwendet, um das Objekt, auf welchem die Uberpriifung durchgefiihrt wurde, anzuzei-
gen.

¢ description
Im Feld description kann eine Beschreibung des Constraints angegeben werden, welche
auch in den Preferences angezeigt wird.

o target
In Target wird die Objekt-Klasse angegeben, auf welcher das Constraint angewendet wer-
den soll. Hier kénnen fiir Live- Constraints auch Ereignisse durch das Feld events angegeben
werden, durch welche eine Modellintegritdtspriifung zur Laufzeit ausgelést wird.

Die Constraint-Namen wurden moglichst so vergeben, dass aus diesen hervorgeht, was diese
iiberpriifen. Die Ids bestehen aus constraint und einer vierstellig gewdhlten Nummer, wobei

31

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

die ersten beiden Ziffern die Gruppe identifizieren, in welche dieses Constraint eingeordnet ist
und die restlichen Ziffern die Constraints einer Gruppe durchnummerieren. Der statusCode ist
gleich dieser Id-Nummer. Zum Speichern der Java- Constraints wird in jedem Adapter ein Packa-
ge org.ontoucp.{Modellname}.validation.adapter.constraints verwendet. Als Modus wird
immer Batch verwendet, aus den in Kapitel 3.1 genannten Griinden. Es werden nur die severity
Grade ERROR und WARNING verwendet. ERROR wird fiir die Kennzeichnung von kritischen Modell-
fehlern und WARNING wird fiir Elemente, die méglicherweise einen Fehler enthalten, verwendet.
Der severity-Grad INFO wird nicht verwendet. Dies stellte sich bei der Implementierung als Vor-
teil heraus, da Laufzeitfehler in Constraints bei der Modellintegritdtspriifung eine Fehlermeldung
der severity INFO nach sich ziehen, und dadurch leicht zu identifizieren sind.

OCL-Constraints werden direkt in der Datei plugin.xml abgelegt, wobei es sich empfiehlt den
Constraint-Code mit <! [CDATA[OCL constraint 11> zu umgeben, da fiir OCL-Constraints hiu-
fig Sonderzeichen benotigt werden, welche im Standarttext eines plugin.xml nicht erlaubt wiren
und ungeklammert zu Fehlern fiihren wiirden.

Im Gegensatz dazu muss fiir jedes Java- Constraint eine eigene Klasse implementiert werden, wel-
che das Interface IValidate implementiert und eine Fehlerliste bzw. eine Erfolgsmeldung zuriick
gibt. Diese Klasse muss auch in der Datei plugin.xml durch das Attribut class= ,,org.ontoucp.
{Modellname}.validation.myConstraint‘‘ im Feld Constraint registriert werden.

Welche Constraints iiberpriift werden, hingt zum Einen davon ab, welcher Kontext fiir die Mo-
dellintegritdtsprifung angegeben ist, und zum Anderen hingt es davon ab, welche Constraints im
Meniipunkt Preferences unter Modelvalidation aktiviert sind.

Verletzungen von Constraints werden nach der Priifung in einem eigenen Fenster angezeigt bzw.
wird die Meldung ,Validation completed successfully“ ausgegeben. Fehlermeldungen bleiben in
der Problems-View gespeichert, von wo aus durch Doppelklick auf den Fehler direkt zu dem
fehlerhaften Objekt im Editor gesprungen werden kann.

Auch ein Aufruf der Modellintegritatspriifung aus dem Code, z.B. vor der Transformation eines
Modells ist, wie in Kapitel 2.3.4 angesprochen, moglich.

3.3 Implementierung der Constraints

Ausgangspunkt fiir die Entwicklung der Constraints stellte eine Liste von bekannten Fehlerquellen
dar, zwei Bespielmodelle und natiirlich das UCP-Framework mit Editoren fiir seine Modelle, auf
welchem diese getestet werden konnten.

3.3.1 Implementierungs-Strategien

Im Zug der Erstellung der Constraints erwiesen sich einige Vorgehensweisen als zielfiihrend.

Die Implementierung von OCL-Constraints erfolgte in der OCL-Konsole. Hier liefsen sich diese we-
sentlich schneller und komfortabler erstellen und testen, als dies in der plugin.xml méglich war. Als
zielfithrend erwies es sich, zuerst die Objekte einzusammeln und zu filtern, bis genau die benétigte
Submenge iibrig war, auf welcher dann die Uberpriifung implementiert wurde. Schlussendlich wur-
de ein fertiges Constraint dann auf den fehlerfreien Beispielmodellen und einem Modell, welches
genau den durch das Constraint abzufangenden Fehler enthilt, getestet.

32

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Fiir die Implementierung der Java- Constraints wurde eine Muster validate ()-Methode erstellt,
welche dann als Basis fiir alle weiteren Constraints verwendet wurde. Diese ist in Abbildung
3.3 dargestellt. Hierbei wird die Liste problems erstellt, welche dann mit den Verletzungen der
Modellintegritétskriterien befiillt wird. Die Objekte, welche in jedem Fall bei der Implementierung
an das Constraint angepasst werden miissen, um ein lauffahiges Constraint zu erhalten, sind rot
unterwellt. Falls diese schlussendlich leer ist, wird eine Erfolgsmeldung zuriickgegeben, ansonsten
eine Liste der aufgetretenen Fehler.

public IStatus wvalidate (IValidationContext ctx)
Content ¢ = (Content)ctx.getTarget();
List<IStatus> problems = new java.util.ArrayList<IStatus>{():
Lizt<Modellobjekt> locus = new java.util.ArrayvList<Modellobijekt>():

locus.add(x):
IStatus problem = ConstraintStatus.createftatus|
oCTH,
locus,
'&r
1234,
errormessage,
c):
problems. add (problem) ;
locus.clear():
if (problems.size() > 0)
retorn Constraint3tatus.cresteMultiStatus(ctx, problems) :

el=e
retorn ctx.createlSuccessStatus|():

Abbildung 3.3: validate()-Methode

3.3.2 Diskursmodell-Constraints

Im Folgenden werden die Modellelement-Klassen eines Diskurses betrachtet, zuerst deren Eigen-
schaften dargelegt und hinsichtlich notwendiger Uberpriifungen evaluiert. Anschliefend werden
die Beziehungen eines jeden Elements zu anderen Diskurselementen hinsichtlich notwendiger Be-
dingungen fiir die Modellintegritdt betrachtet.

Der Ausgangspunkt fiir die Entwicklung der Diskursmodell- Constraints war zum Einen eine Liste
von bekannten Fehlerquellen des Entwicklerteams, zum Anderen eine Evaluierung des Diskursmo-
delleditors, hinsichtlich der Moglichkeiten dessen, was modelliert werden kann, gegen das, was nach
den eingangs erwihnten Theorien erlaubt ist und transformiert werden kann. Diese Constraints
finden sich im Anhang A.

Die Gruppierung und Implementierung der Constraints wurde so vorgenommen, dass ein moglichst
komfortables Arbeiten ermoglicht wird. Dazu wurden die Warnings in eine Gruppe zusammenge-
fasst, sodass diese in den Preferences — Model- Validation durch ein einziges Hiakchen abgeschaltet

33

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

werden kdnnen. Die restlichen Constraints wurden thematisch gruppiert. Dadurch kénnen z.B.
Relationen iiberpriift werden, ohne dass auch simtliche Adjacency Pairs, Communicative Acts
und Inserted-Sequences liberpriift werden. Dadurch soll ein méglichst einfaches Debuggen eines
Modelles moéglich werden.

3.3.2.1 Diskurs
Ein DiscoURSE-Objekt hat folgende Eigenschaften:

e goal String Array
Beschreibt das Ziel, welches durch diesen Diskurs erreicht werden soll.

e name String
Gibt dem Diskurs einen Namen.

e Action-Models EObject Array
Definiert die Action-Modelle, welche in diesem Diskurs Verwendung finden.

e Domain-Models EObject Array
Definiert die Domain of Discourse-Modelle, welche in diesem Diskurs Verwendung finden.

Des Weiteren kann ein Diskurs die folgenden Objekte beinhalten:

e nodes Node Array
Nodes stellen die Generalisierung von Relationen und Adjacency Pairs dar.

e agents SenderAgent Array
Definiert die Aktoren dieses Diskurses.

e communicativeActs communicativeAct Array
Beinhaltet alle Communicative Acts dieses Diskurses.

e subDiscourses Discourse Array
Weitere Diskurse, welche in diesem Diskurs enthalten sind.

e links Link Array
Diese verbinden Relationen und Adjacency Pairs.

Die Uberpriifung, ob ein Diskurs-Objekt giiltig ist, erfolgt durch das Constraint check AM, DM,
Agent, Roots. Dieses wurde in Java realisiert, da die Uberpriifung, ob ein Diskurs-Objekt die
oberste Instanz darstellt, durch die Uberpriifung discourse.eContainer() == null geschieht,
welche in OCL nicht realisiert werden konnte. Imm Hauptdiskurs-Element miissen zumindest ein
Action-Modell, in den meisten Fillen das Basismodell, welches in der Datei basic.anm vorliegt,
ein Domain of Discourse-Modell und zwei Agenten definiert sein. In Inserted-Sequences miissen
eben diese Felder leer sein. Da Subdiskurse derzeit nicht implementiert sind, wird von deren
Uberpriifung abgesehen und ihnen zugehérige Objekte werden beim Erstellen von Objektmengen
vernachlissigt.

Jeder Diskurs bendtigt genau einen Root-Node, welcher den Ausgangspunkt fiir den Kommunika-
tionsablauf in diesem Diskurs darstellt und dadurch definiert ist, dass er keinen Parent besitzt.

34

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Die Funktion discourse.getRootNodes() liefert all jene Objekte, auf welche dies zutrifft und
wire auch seiteneffektfrei, sodass einer Losung als OCL-Constraint nichts im Wege stehen wiirde.
Der Doppelklick auf eine Fehlermeldung just one root node allowed, wiirde im Diskurseditor
allerdings auf das Diskurs-Objekt springen, und vom Benutzer eine Suche verlangen, welches von
all den diesem Diskurse zugehorigen Objekten das Fehlerhafte ist. Bei der Realisierung als Java-
Constraint, wurde von der Mdoglichkeit der Definition eines Locus in der Fehlermeldung Gebrauch
gemacht, sodass fiir jeden Root-Node nun eine Fehlermeldung generiert wird und der Editor auf
Doppelklick zu dem entsprechenden Objekt springt.

Des Weiteren sollten in einem Diskurs noch durch die Eigenschaften name und goal ein Name und
ein Ziel definiert sein. Diese sind allerdings nicht zwingend erforderlich und haben auf die Modell-
transformation keinen Einfluss. Wohl aber dienen sie der Ubersichtlichkeit und Verstindlichkeit.
Aus diesem Grund stellt ihre Abwesenheit und damit die Verletzung der Constraints name not
empty und goal not empty keinen Error sondern lediglich eine Warning dar.

3.3.2.2 Modellstruktur

Die Topologie aller Objekte in einem Diskurs muss ein Baum sein, was durch das Constraint check
for loops iiberpriift wird. Dies ist bei Adjacency Pair, Communicative Act und Content-Objekten
implizit gegeben, da Adjacency Pairs und Communicative Acts keine Relationen als Nachfolger
haben konnen und in Adjacency Pairs immer ein oder mehrere Communicative Acts eingetragen
werden.

Bei RST-Relationen und prozeduralen Relationen besteht allerdings die Mdoglichkeit, diese zu
einem Zyklus zu formen, in dem jede Relation den Parent einer anderen Relation darstellt, siche
Abbildung 3.4.

&9 Joint

Mucleus

9 Joint

&9 Joint

Abbildung 3.4: Zyklus aus Relationen

Diese hitten keinen Root-Node und wéren damit in einem normalen Diskurs nie zu erreichen. Sie
kénnen im graphischen Diskurseditor gezeichnet werden, werden allerdings nicht angezeigt, da sie
keinen Baum darstellen. Sie sind allerdings in der XML-Datei des Modells gespeichert und werden
an die Transformationsmethode iibergeben, sofern sie nicht abgefangen werden.

Fiir die Generierung von Endlosschleifen oder den Aufbau von Iteratorbasierten-Strukturen, wel-
che wiederholt ausgefiihrt werden, steht die prozedurale Relation IfUntil zur Verfiigung. Diese
IfUntil-Konstrukte kénnen transformiert und in ein User Interface umgewandelt werden.

Die Vorgehensweise hierbei ist, in einem ersten Schritt alle RST-Relationen und prozeduralen
Relationen eines Diskurses ,einzusammeln®. Dann wird fiir jede Relation versucht, im Baum ,auf-
warts zu gehen, Parent fiir Parent, und jede Relation in einer Liste abzulegen, wobei bei jeder

35

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

neuen Relation iiberpriift wird, ob sich diese bereits in dieser Liste befindet. Ist dies der Fall, so
bewegt sich der Algorithmus im Kreis und bricht mit einer entsprechenden Fehlermeldung ab.
Wird hingegen eine Relation ohne Parent-Relation erreicht, d.h. ein Root-Node, so kann daraus
geschlossen werden, dass eine Baum-Topologie vorliegt.

Durch das Ausgeben von Fehlermeldungen mit einem Locus auf das Element, welches beim Auf-
wartsgehen“ im Baum zweimal erreicht wird, findet sich schlussendlich eine Liste von Fehlermel-
dungen mit den Relationen, welche Teil der Schleife sind und von denen jede im Diskurseditor
iiber die Problem-Ansicht von FEclipse erreicht werden kann.

Dieses Constraint ware prinzipiell auch in OCL realisierbar. Zwar steht in OCL keine ,,Schleifen-
funktionalitat” zur Verfiigung, es wire allerdings eine Losung bis zu einer gewissen fix festgelegten
Tiefe denkbar. Dadurch wére aber die maximale Tiefe, bis zu welcher das Modell nach Schleifen
durchsucht werden kann, fix festgelegt und die Implementierung wire signifikant schwieriger als
bei einer Implementierung in Java. Aus diesem Grund wurde dieses Constraint in Java realisiert.

3.3.2.3 Agenten

Ein Agent hat folgende Eigenschaften:

e Id String
Gibt einem Agenten eine eindeutige Id.

e Name String
Gibt einem Agenten einen Namen.

e Performs Communicative Act Array
Definiert die Communicative Acts, welche von diesem Agenten ausgefiihrt werden.

e Relations Relation Array
Definiert die Relationen und prozeduralen Relationen, welche von diesem Agenten ausgefiihrt
werden.

Ein jeder Agent benétigt eine eindeutige Id. Diese muss entweder ,A“ oder ,B“ sein. Dies wird
durch das Constraint id not empty and A oder B iiberpriift, welches in Kapitel 3.3.2.7 niher
beschrieben ist.

Ein Agent kann einen Namen haben. Da dies lediglich der Versténdlichkeit des Modells dient, ist
diese Uberpriifung als Warning durch das Constraint name not empty realisiert.

Da in die Felder Performs und Relations nur Commaunicative Acts , Relationen oder prozedurale
Relationen eingetragen werden koénnen und dies durch den Editor automatisch vorgenommen wird,
sobald einem Communicative Act, einer Relation oder einer prozeduralen Relation ein Agent
zugewiesen wird, ist eine Uberpriifung dieser beiden Eigenschaften nicht notwendig.

3.3.2.4 Relationen
RST-Relationen und prozedurale Relationen haben folgende Eigenschaften:

36

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

e Agent Agent
Gibt, wo bendétigt, den Agent an, welcher die Entscheidung trifft.

e Children Link Array
Definiert die Links, welche von dieser Relation ausgehen.

e Parent Link
Definiert den Parent-Link.

e Name String
Definiert einen Namen.

Die Relationen IFUNTIL, CONDITION und ELABORATION bendtigen einen Agenten. Dieser defi-
niert welcher Kommunikationsteilnehmer iiber den weiteren Kommunikationsablauf entscheidet.
Dass diese einen Agenten besitzen, wird durch das Constraint some relations need an agent
iiberpriift.

Jede konkrete Spezialisierung einer Relation bendtigt bestimmte Children-Links, diese werden im
Folgenden ausfiihrlich dargelegt. Bei den Modellintegrititsbedingungen fiir diese gibt es zahlreiche
Gemeinsamkeiten, sodass sie in verhéltnisméikig wenigen Constraints zusammen gefasst werden
kénnen. Tabelle 3.1 gibt an, welche Relation welche Link-Typen und wie viele davon haben kann
bzw. haben muss.

Der Parent-Link kann nicht in den Eigenschaften eingetragen werden, dies wird vom Editor au-
tomatisch vorgenommen, wenn zu einer Relation ein Link gezogen wird bzw. wenn zu einem Link
eine Child-Relation erstellt wird. Relationen ohne Parent stellen Root-Nodes dar. Die Uberprii-
fung, welche sicherstellt, dass genau einer vorhanden ist, ist in Kapitel 3.3.2.1 beschrieben. Fine
Relation kann einen Namen haben. Da dies lediglich der Verstdndlichkeit des Modelles dient, ist
diese Uberpriifung als Warning durch das Constraint name not empty realisiert.

RSTSingleNucleusRelationen miissen im Allgemeinen genau einen Nucleus und einen Satellite
besitzen. Dazu werden in einem ersten Schritt alle Children iiberpriift, ob deren LinkType Nucleus
oder Satellite ist und in einem zweiten Schritt sichergestellt, dass jeweils eines von jedem Typ
vorhanden ist. Davon ausgespart bleibt die Relation RESULT, da es Sonderfille gibt, in welchen
diese nur einen Nucleus aber keinen Satellite besitzen darf. Da dies in den meisten Fillen eher
einen Fehler denn ein gewiinschtes Verhalten modelliert, wird vom Constraint result 1 n eine
Warnung ausgegeben. In keinem Fall allerdings darf ein Result mehr als einen Satellite besitzen,
was durch ein weiteres Constraint result 1 n s=2..* sichergestellt wird.

Multinucleusrelationen und die prozedurale Relation SEQUENCE bendtigen zwei oder mehr Nucles.
Diesem Umstand wird in dem Constraint MultiNucleusRelation and Sequence 2..* n analog
dem der RSTSingleNucleusRelationen Rechnung getragen.

Eine SEQUENCE bendétigt eine eindeutige Ordnung ihrer Nuclei. Diese Ordnung der Zweige er-
folgt anhand der Werte der Eigenschaft condition. Die Conditions aller Nuclei einer SEQUENCE
miissen eindeutig von einander unterscheidbar sein, was durch das Constraint sequence ordered
iiberpriift wird.

Die prozedurale Relation CONDITION benétigt zwingend einen Then-Link und einen Else-Link,
was durch Condition 1 then 1 else iiberpriift wird.

Ein IFUNTIL fordert einen Tree, die Zweige Then und FElse sind optional und auf maximal einen
limitiert. Falls die Repeat-Condition eines Tree-Links leer ist, wird dieser Tree-Zweig sténdig

37

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Relation Nuclei | Satellite | Tree | Then | Else
Joint
Contrast 2..% 0 0 0 0
Alternative
Sequence
IfUntil 0 0 1
Condition 0 0
Background
Elaboration 1 1 0 0 0
Annotation
Title

Result 1 0..1 0 0 0

olo
Ll
olo
N

Tabelle 3.1: Links fiir Relationen und prozedurale Relationen

wiederholt. Da ein endlosschleifenbildendes IFUNTIL manchmal schwer zu finden sein kann, wird
vom Constraint tree has empty repeat condition eine Warnung ausgegeben, um den User auf
diesen Umstand hinzuweisen.

Falls ein Else-Zweig aber kein Then-Zweig vorhanden ist, muss angenommen werden, dass dieser
vergessen oder geloscht wurde. Dieser Else-Zweig verursacht keine Fehler bei der Transformation,
er wird allerdings niemals ausgefiithrt werden, daher wird vom Constraint else needs a then nur
eine entsprechende Warnung ausgegeben.

Die Uberpriifung von ELABORATION, TITEL, ANNOTATION und BACKGROUND hinsichtlich der
Typen ihrer Satellite-Zweige, wie in Kapitel 2.2.1.1 beschrieben, wurde nicht realisiert. Ein Grund
dafiir ist, dass dies nur der Darstellung dient, und ein Fehler hier sofort im fertigen User Inter-
face ersichtlich ist. FEin weiterer Grund ist, dass dies keinen Absturz des Programms nach sich
zieht, und das schlussendliche Aussehen des User Interfaces hauptsichlich durch die definierten
Formatierungen beeinflusst wird.

3.3.2.5 Links
Links besitzen die folgenden Eigenschaften:

e ConditionString
Definiert die Bedingung, unter welcher der durch diesen Link reprisentierte Kommunikati-
onszweig weiterverfolgt wird.

e Condition Abstract Syntax Tree (AST) String
Enthilt die Bedingung in geparster Form.

e Repeat Condition String
Definiert die Bedingung, unter welcher der Tree-Zweig eines IfUntil wiederholt wird.

e Repeat Condition AST String
Enthalt die Wiederholungsbedingung in geparster Form.

e Child Relation oder Adjacency Pair
Definiert das Zielobjekt, mit welchem die Parent-Relation verbunden wird.

38

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

e Parent-Relation
Definiert die Parent-Relation.

e Type LinkType
Definiert den Typ dieses Links.

Condition und Repeat Condition werden in einer speziellen Sprache formuliert, ndheres dazu
in Kapitel 3.3.2.8. Diese beiden Felder werden geparst und ihr Ergebnis in den zugehorigen AST
Feldern abgelegt.

Jeder Link muss einen LinkType besitzen, welcher einen der folgenden Typen sein kann:

e NUCLEUS
e SATELLITE
e THEN

e ELSE

e TREE

Die von der Klasse PROCEDURALRELATION abgeleiteten prozeduralen Relationen SEQUENCE,
IFUNTIL und CONDITION diirfen nur Links vom Typ Tree, Then und Else besitzen, wihrend von
der Klasse RSTRELATION abgeleitete Relationen nur Links vom Typ Nucleus und Satellite
besitzen diirfen.

Ein Tree-Link darf nur an IFUNTIL angehidngt werden, was durch das Constraint tree parent
ifuntil iberpriift wird. Then- und Else-Links diirfen nur an IFUNTIL oder CONDITIONS angehéngt
werden, dies wird durch then, else parent ifuntil or condition iiberpriift.

Ein Then-Link bendtigt eine Bedingung, wann dieser ausgefithrt werden soll, ansonsten wird
der FElse-Link gewéhlt, sofern dieser vorhanden ist. Durch then must have a condition wird
iiberpriift, ob diese definiert ist. Damit wird allerdings nicht sichergestellt, dass diese Bedingung
auch korrekt ist, lediglich deren Vorhandensein wird iiberpriift.

Ein Tree-Link darf eine Repeat-Condition besitzen, allerdings keine Condition. Dies wird durch
das Constraint in tree condition must not be set iiberprift.

Die Uberpriifung von Links ist insofern wichtig, als diesen keine Namen zugewiesen werden kon-
nen, wodurch eine Fehlersuche im Diskurseditor zu einer zeitraubenden und miihsamen Suche
wird. Da Links einen mafgeblichen Einfluss auf das Modellverhalten haben, ist das Uberpriifen
ihrer Integritét ein relevanter Faktor, damit aus einem Diskursmodell ein User Interface generiert
werden kann.

Links verkniipfen Relationen untereinander bzw. diese mit Adjacency Pairs. Dazu werden sie in
die Eigenschaften parent und child eingetragen. Dies wird im graphischen Editor automatisch
vorgenommen, sobald eine Verbindung erstellt wird. Wird einer Relation oder einem Adjacen-
cy Pair, welche bereits einen Parent haben, ein neuer Parent zugewiesen, so bleibt vom alten
Link eine ,Leiche” ohne parent zuriick, welche erst spater bei einem Update geléscht wird. Dies
fiihrt zu einer zwischenzeitlichen Verletzung der Modellintegritit, welche durch das Constraint
parent child set erkannt wird, welches das Vorhandensein dieser beiden Parameter fiir jeden
Link iiberpriift.

39

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

3.3.2.6 Adjacency Pairs

¢ Opening Communicative Act Communicative Act
Gibt an, welcher Communicative Act dieses Adjacency Pair erdffnet.

e Closing Communicative Acts Communicative Act Array
Enthélt die Communicative Acts, welche dieses Adjacency Pair schliefen.

e Parent-Link
Definiert den Parent-Link.

e Name String
Gibt dem Adjacency Pair einen Namen.

Ein Adjacency Pair stellt ein Dialogelement dar, welches typische Kombinationen von Commu-
nicative Acts verkniipft z.B. Frage-Antwort. Deshalb wird im Constraint AP must have an
opening act tberpriift, ob jedes Adjacency Pair einen Opening Communicative Act hat, welcher
eine Frage oder ein Informing darstellt.

check closing CA stellt sicher, dass Closing Communicative Acts vorhanden sind, sofern der
Opening Communicative Act nicht vom Typ Informing ist. Welche Communicative Acts vom Typ
Opening oder Closing sind, ist aus Tabelle 2.1 ersichtlich.

Ein Adjacency Pair kann einen Namen haben. Da dies lediglich der Verstdndlichkeit des Modelles
dient, ist diese Uberpriifung als Warning durch das Constraint name not empty realisiert.

Der Parent-Link kann nicht in den Eigenschaften eingetragen werden, dies wird vom Editor au-
tomatisch vorgenommen, wenn zu einem Adjacency Pair ein Link gezogen wird bzw. wenn zu
einem Link ein Child-Adjacency Pair erstellt wird. Adjacency Pairs ohne Parent stellen Root-
Nodes dar. Die Uberpriifung, welche sicherstellt, dass genau einer vorhanden ist, ist in Kapitel
3.3.2.1 beschrieben.

3.3.2.7 Communicative Acts

e belongs To Agent
Gibt den Agent an, welcher diesen Communicative Act durchfiihrt.

¢ Opening Communicative Act Parent Adjcency Pair
Gibt das Adjacency Pair an, welches durch diesen Communicative Act erdffnet wird.

e Closing Communicative Act Parent Adjacency Pair
Gibt das Adjacency Pair an, welches durch diesen Communicative Act beendet wird.

e Id String
Gibt dem Communicative Act eine 1d.

e Name String
Gibt dem Communicative Act einen Namen.

40

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Ein Communicative Act kann einen Namen haben. Da dies lediglich der Verstadndlichkeit des Mo-
dells dient, ist diese Uberpriifung als Warning durch das Constraint name not empty realisiert.

Die Communicative Acts eines Adjacency Pairs reprisentieren die Dialogelemente. Diesen Com-
municative Acts muss ein Agent zugewiesen werden, das heiflt, es muss angeben werden, welcher
Kommunikationsteilnehmer die Frage stellt und welcher die Antwort darauf gibt. Falls Frage und
Antwort demselben Agent zugewiesen sind, stellt dies ein Selbstgespréch dar, welches dem Kom-
munikationsprozess nicht dienlich ist. Um dies zu verhindern, wird durch different opening and
closing CA - Agent iiberpriift, ob der Opening Communicative Act eines Adjacency Pair einen
Agenten hat, welcher sich von den Agenten der Closing Communicative Acts unterscheidet.

Es ist zu beachten, dass ein Adjacency Pair nur 1 Opening Communicative Act haben kann,
wohl aber mehrere Closing Communicative Acts. Opening Communicative Acts miissen vom Typ
Question, Request, Offer oder Informing sein, dies wird durch das Constraint openingCA
of type cQ 0Q Req Off Inf iiberpriift, entsprechend Tabelle 2.1.

Closing Communicative Acts miissen vom Typ Answer, Accept, Reject oder Ok sein, was durch
closingCA of type Answ Acc Rej ok iberpriift wird.

Ein Communicative Act kénnte durch Definition sowohl eines Closing- als auch eines Opening
Communicative Act-Parent zwei Adjacency Pairs bzw. demselben Adjacency Pair zugeordnet
werden. Damit wiirde zum Einen die Modelltopologie keinen Baum mehr darstellen und zum
Anderen ein Selbstgespriich modelliert. Dieser Fehler wird auch durch die Uberpriifung des Typs
im vorhergehenden Absatz abgefangen, durch das Constraint opening xor closing wird aber die
Fehlerursache besser aufgezeigt.

Des Weiteren wird durch check content not empty iiberpriift, ob Communicative Acts vom Typ
Accept, Answer, Ok und Reject ein Content-Objekt besitzen und in diesem eine Spezifikation
vorhanden ist.

Die Uberpriifung, ob korrekte, das heift der Tabelle 2.1 entsprechende, Communicative Act-Paare
vorliegen, wird von den drei Constraints QQ adjacent to Answ, req adjacent to inf acc rej
und Off adjacent to acc rej Ok besorgt.

Die Eigenschaft Id soll Communicative Acts und Agenten eindeutig identifizieren, und wird mo-
delliibergreifend auch im Structural UI-Modell verwendet, wo tiber die Id die Communicative Acts
eingetragen werden, welche spezifiziert, woher die Daten fiir ein spezielles Widget kommen. Dies
liefse sich durch das ,Einsammeln* aller Communicative Acts und Agenten, welche im Diskurs und
samtlichen insertedDiscourses vorhanden sind, und einem Vergleich unter all diesen bewerkstelli-
gen. Eine schonere Losung ist allerdings, im ECore-Modell die Eigenschaft Id verpflichtend und
unique zu machen. Den Agenten, von denen es immer zwei geben muss, werden die Ids A und B
zugewiesen, wahrend Communicative Acts alle anderen Ids besitzen diirfen. Dies wird durch das
Constraint id not empty and A oder B fiir Agenten iiberpriift und durch id not empty and
not A and not B fiir Communicative Acts.

Ein im ECore-Modell als verpflichtend definiertes Stringobjekt muss nur vorhanden sein, d.h.

ungleich null sein, wodurch auch ein Leerstring giiltig wire, darum wird {iberpriift, ob dessen
Lange grofser Null ist.

41

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

3.3.2.8 Content

Im Content wird die Aufgabe eines Dialogelements beschrieben und, was mit den Action- und
Domain of Discourse-Modellelementen im Weiteren geschehen soll. Dies geschieht in einer SQL-
dhnlichen Sprache, welche so weit wie moglich an den natiirlichen Sprachgebrauch angepasst ist.
Im Content kénnen Action- und Domain of Discourse-Modellobjekte enthalten sein. Der Content
bildet die Schnittstelle zwischen dem User Interface und der Applikationslogik. Ein Content-
Objekt besitzt die folgenden Eigenschaften:

e Specification String
Beschreibt den Content.

e Specification AST String
Darstellung des Content in geparster Form.

Das Content-Objekt besitzt die Specification, welche zur Eingabe dient, und die Specification
AST, welche die geparste Form der Specification anzeigt. Die fiir den User komfortabelste Lo-
sung wire, einen eigenen Parser zu schreiben, welcher die Specification auf semantische und
syntaktische Korrektheit priift, und im Fall eines Fehlers genau dessen Ort und Art angibt. Dies
wiirde allerdings einen signifikanten Aufwand bedeuten, da hier fiir jeden Content zahlreiche Ac-
tion- und Domain of Discourse-Modellelemente gepriift werden missten.

Ein einfacherer und bedeutend schnellerer Weg ist, die SpecificationAST anhand formaler Para-
meter zu priifen. Dazu wurde das Constraint verify content objects versus the domain and
action modell in der Klasse ContentCheck.java implementiert.

Dadurch wird im ersten Schritt Giberpriift ob das Objekt SpecificationAST iiberhaupt vorhanden
ist und nicht den String ,mismatched token* beinhaltet. Die Fehlermeldung ,mismatched token“
beschreibt sowohl die Art des Fehlers als auch dessen Position im String. So wird zum Beispiel
,ho text bei der Eingabe von Leerzeichen ausgegeben.

Bei der Eingabe eines Strings kann es vorkommen, dass dieser nur zum Teil geparst werden kann
und dann ein Abbruch erfolgt. In diesem Fall wird die alte SpecificationAST beibehalten. Dies
stellt allerdings ein Manko des Parsers dar, welcher in absehbarer Zukunft weiterentwickelt wird,
sodass kein Constraint implementiert wurde, um diesen Fehler zu entdecken.

Der zweite Schritt ist die Uberpriifung, ob die Definition der SpecificationAST entweder eine
Instanz der Interfaces TAction oder INotification ist. Wenn dies der Fall ist, darf angenommen
werden, dass der Basisbefehl korrekt geparst werden konnte.

In einem dritten Schritt wird iiberpriift, ob der Typ des den Content beinhaltenden Commu-
nicative Acts zum Typ der Definition passt. In der Tabelle 3.2 sind die erlaubten Beziehungen
angegeben.

Im vierten Schritt wird der Typ des Communicative Acts mit der verwendeten Action oder No-
tification aus den Action-Modellen verglichen, da bestimmte Communicative Act-Typen die Ver-
wendung bestimmter Actions oder Notifications erfordern. Dabei ist zu beachten, dass diese nicht
notwendigerweise aus dem Modell Basic stammen miissen, allerdings von dessen Actions und
Notifications abgeleitet sein miissen. So muss z.B. eine Closed Question die Action select aus
dem Basismodell oder eine Spezialisierung davon im Content haben. Welche Communicative Acts
welche Actions oder Notifications aus dem Basismodell bzw. deren Spezialisierungen enthalten
miissen, ist der Tabelle 3.2 zu entnehmen

42

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Communicative Act - Typ | Content Typ | Basic Action
Informing Notification

ClosedQuestion Action Select
OpenQuestion Action Get oder Update
Accept/Reject Notification

Request Action

Offer Action

Tabelle 3.2: Bedingungen fiir den Content abhéingig vom Communicative Act Typ

3.3.3 Transformationsregelmodell-Constraints

Im Folgenden werden die Modellelement-Klassen von Transformationsregeln betrachtet. Zuerst
werden deren Eigenschaften dargelegt und hinsichtlich notwendiger Uberpriifungen evaluiert. An-
schliefend werden die Beziehungen eines jeden Elements zu anderen Transformationsregelelemen-
ten hinsichtlich notwendiger Bedingungen fiir die Modellintegritidt betrachtet.

Diese Transformationsregeln werden fiir die Modell-zu-Modell Transformation von Diskursmo-
dellen zu Structural UI-Modellen verwendet. Sie beschreiben, welche Objektbeziehungen eines
Diskursmodells auf welche Art und Weise im Structural UI-Modell dargestellt werden. Da Regeln
vom User selbst erstellt werden kénnen bzw. fiir jede Zielplattform erstellt werden miissen, exi-
stieren zahlreiche Regeln, welche angewendet werden konnen. Des Weiteren ist deren Erstellung
ein schwieriges und detailreiches Unterfangen, welches noch durch den Umstand erschwert wird,
dass zumeist viele Regeln zusammenspielen. Durch eine Uberpriifung der Modellintegrititskrite-
rien der Regeln kann zumindest eine formale Korrektheit sichergestellt und die Haufigkeit von
Fehlern bei der Transformation aufgrund von Fehlern in Structural UI-Modellen, welche durch
fehlerhafte Regeln erzeugt werden, reduziert werden.

Regeln besitzen die folgenden Teile:

e name String
Gibt der Regel einen Namen.

e priority Integer
Gibt die Wichtigkeit der Regel an, wenn entschieden werden muss, welche Regel verwendet
wird, wenn ansonsten gleichwertige Regeln zutreffen.

e source EObject
Gibt das zu transformierende Objekt im Diskursmodell an.

e target EObject
Gibt das Zielobjekt an, welches kreiert oder modifiziert werden soll.

e space Integer
Space definiert die Grofe eines Elements. Diese wird als Kriterium der Entscheidungsfin-
dung, wo dieses Element schlussendlich dargestellt werden soll, verwendet.

e type RuleType
Gibt den Regeltyp an und bestimmt das grundlegende Verhalten. Eine Regel kann vom Typ
Create, Modify oder Delete sein.

43

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

e ruleSet RuleSet
Definiert die Regelgruppe, der diese Regel angehort.

e discourse Discourse
Definiert ein Muster, welches im Diskursmodell vorhanden sein muss, damit die Regel an-
gewandt wird.

o structuralUI Widget
Definiert das Structural UI-Muster, welches erstellt wird.

e additionalConstraints Constraint Array
Hier kénnen zusitzliche Einschrinkungen definiert werden, welche erfiillt sein miissen, damit
die Regel ausgefiihrt wird.

e mappings Mapping Array
Setzt bestimmte Diskurselemente und Structural Ul-Elemente in Beziehung.

Jede Regel benétigt ein Source- und ein Target-Objekt, welche definieren, von welchem
Diskursmodell-Objekt ausgehend welches Objekt im Structural UI-Modell bearbeitet wird. De-
ren Vorhandensein, wird im ECore-Modell durch die Eigenschaft Lowerbound 1 eingestellt. Durch
Upperbound 1 wird erreicht, dass genau ein Objekt vorhanden ist.

Eine Regel besitzt des Weiteren ein Source-Pattern in der Form eines Diskursmodells, welches das
Muster enthilt, nach welchem im Diskursmodell gesucht werden soll, und ein Target- Pattern in der
Form eines Structural UI-Modells, welches das Muster enthélt, welches im Structural UI-Modell
erstellt werden soll.

Im Source-Pattern vorkommende Adjacency Pairs konnen Communicative Acts besitzen. Wie im
Diskursmodell sind nur solche Communicative Act-Kombinationen erlaubt, welche in Tabelle 2.1
aufgelistet sind. Da diese Diskursmodelle nur Muster darstellen, nach welchen gesucht werden soll,
ist hier nicht zwingend gefordert, dass diese komplett vorhanden sein miissen. Auch ein Adjacency
Pair mit nur einem Communicative Act stellt ein giiltiges Muster dar, welches gesucht werden
kann. Deshalb sind diese Constraints, check openquestion answer, check closedquestion
answer, check offer request - accept reject, check informing und check question answer
als Warnings ausgefiihrt.

Source- und Target-Objekte miissen sich in den Source- und Target-Patterns befinden, was
durch das Constraint source und target in rule sichergestellt wird. Dazu werden die beiden
Muster rekursiv durchgegangen und jedes Element der Modelle mit Source oder Target vergli-
chen.

Dieselbe Vorgehensweise wird auf Mappings im Constraint mapping only on elements of rule
angewandt. Mappings besitzen auch Source- und Target-Objekt, die in den Mustern vorhanden
sein miissen.

Die Widgets aus dem Structural UI-Muster konnen wie alle Widgets die Eigenschaft traces-
To definiert haben. Diese beschreibt, fiir welches Element des Diskursmodelles das Widget im
Structural UI-Modell erzeugt wurde. Im Fall einer Regel miissen diese TracesTo-Objekte auf
Elemente des Diskursmusters dieser Regel verweisen. Dazu wird im Constraint traces to ca/rel
in rule zuerst das Teil Structural UI-Modell nach tracesTo durchsucht und im Erfolgsfall das
gesamte Diskursmodellmuster nach dem Objekt, auf welches tracesTo verweist.

44

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Im Folgenden werden die Constraints zur Uberpriifung von hiufig vorkommenden Mustern in
Regeln beschrieben. Diese miissen im Allgemeinen erfiillt sein, wenn der Agent des Opening Com-
municative Acts die Applikation ist. Es gibt allerdings Sonderfille, sodass diese Constraints als
Warnings ausgefiihrt sind.

e check openquestion answer
Ein Open Question - Answer Paar sollte ein InputWidget bzw. eine Spezialisierung davon
und einen Button mit der Answer im Fwvent Feld erzeugen.

e check closedquestion answer
Ein Closed Question - Answer Paar sollte ein Listwidget und einen Button, welcher die
Answer im FEvent Feld enthélt, erzeugen.

¢ check offer request - accept reject
Ein Request oder Offer, welches Accept oder Reject besitzt, sollte einen Button mit diesem
Accept und einen Button mit diesem Reject im Event Feld erzeugen.

e check question answer
Ein Adjacency Pair mit einem Question-Answer Paar sollte ein InputWidget bzw. eine
Spezialisierung davon mit dem Fwvent der Antwort erzeugen.

e check informing
Ein Informing sollte keine InputWidgets bzw. Spezialisierungen davon erzeugen und sollte
zumindest ein Qutput Widget bzw. eine Spezialisierung davon erzeugen.

3.3.4 Structural UI Constraints

Im Folgenden werden die Modellelement-Klassen eines Structural UI-Modells betrachtet. Zuerst
werden deren Eigenschaften dargelegt, welche anschlieRend hinsichtlich notwendiger Uberpriifun-
gen evaluiert werden. Dann werden die Beziehungen eines jeden Elements zu anderen Structural
Ul-Elementen hinsichtlich notwendiger Bedingungen fiir die Modellintegritat betrachtet.

Das Structural UI-Modell ist das Ergebnis einer Modell-zu-Modell-Transformation eines Diskurs-
modelles zu einem Structural UI-Modell unter Beriicksichtigung einer Auswahl von Transforma-
tionsregeln. Es kann dabei vorkommen, dass zahlreiche einfache Regeln auf ein einzelnes Model-
lelement wirken. Dies stellt einerseits einen Faktor der Méachtigkeit des UCP-Frameworks dar,
da hier durch die Kombination einfacher und nachvollziehbarer Regeln komplexe Effekte erreicht
werden konnen, andererseits stellt es eine immanente Fehlerquelle dar. Derartige Fehler kénnen
auf mannigfaltige und unvorhersehbare Weise eine Codegenerierung unméglich bzw. fehlerhaft
machen.

Structural UI-Modelle basieren auf WIDGETS, welche folgende Eigenschaften haben.

e name EString
Gibt dem Widget einen Namen.

¢ visible EBoolean
Gibt an, ob dieses Widget sichtbar ist.

e enabled EBoolean
Gibt an, ob dieses Widget verwendet wird.

45

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

e contentSpecification EString
Dieses Feld wird wihrend dem ersten Transformationsschritt (Diskursmodell zu Structural
UI-Modell) ausgewertet. Hier kann eine OCL-Ezpression angegeben werden, die auf das
Content-Objekt des Communicative Acts, auf welchen das tracesTo-Feld verweist, angewen-
det wird. Dieses Objekt ist gegebenenfalls im Domain of Discourse-Modell spezifiziert.

e content EObject
Im Fall, dass eine OCL-FEzpression im contentSpecification-Feld enthalten ist, enthilt die-
ses Feld das Attribut des Content-Objekts, das von diesemm Widget reprisentiert werden
soll. Dieses Feld enthilt ebenfalls einen Teil des Resultats der Auswertung der OCL-
Ezpression aus dem ersten Transformationsschritt und ist fir den zweiten Transformati-
onsschritt (Structural UI-Modell zu User Interface-Quellcode) von Bedeutung.

e contentReference EReference
Im Fall, dass die OCL-Ezpression im contentSpecification-Feld eine Referenz auflost, wird
in diesem Feld der Name der Referenz eingetragen. Dieses Feld enthilt einen Teil des Re-
sultats der OCL-Ezpression-Auswertung aus dem ersten Transformationsschritt und ist fiir
den zweiten Transformationsschritt (Structural UI-Modell zu User Interface-Quellcode) von
Bedeutung.

o text EString
Enthélt statischen Text oder eine Formattierungsvorgabe fiir das Widget.

e width Elnt
Definiert die Breite des Widgets.

e height Elnt
Definiert die Hohe des Widgets.

Des Weiteren kénnen Widgets die folgenden Elemente beinhalten:

e style Style
Gibt den zu verwendenden Style an.

e tracesTo EObject
Verweist auf ein Element des Diskursmodelles.

e layoutData LayoutData
Enthélt Daten zur Darstellung dieses Widgets.

e parent Panel
Definiert das Panel, welches dieses Widget enthélt.

Von dieser Klasse WIDGET werden dann die Klassen INPUTWIDGET, OUTPUTWIDGET und PA-
NEL abgeleitet, welche wiederum zahlreiche Spezialisierungen besitzen.

Um sicherzustellen, dass aus einem Structural UI-Modell ein User Interface generiert werden
kann, muss es einigen formalen Regeln geniigen, welche in den Stuctural UI-Modell Constraints
implementiert sind. Es ist hier ausreichend, die Spezialisierungen der abstrakten Klasse WIDGET

46

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

auf Modellintegrititskriteriumskonformheit zu iiberpriifen. In den Layout-Klassen sind Werte spe-
zifiziert, welche, sofern sie vorhanden sind, das Aussehen bestimmen. Fiir den Fall, dass ein Lay-
out-Wert nicht angegeben ist, wird dieser bei der Codegenerierung berechnet, niheres dazu findet
sich in [Leil0].

Ein Structural UI-Modell stellt einen auf Widgets basierenden Baum dar, welcher auf einem
Choice-Widget basiert und dessen zweiter Level nur aus Frames bestehen darf. Die Integritit
dieser Topologie wird durch die beiden Constraints first level must be choice und second
level must be frame sichergestellt.

Die vier Parameter content, contentReference, contentSpecification und text spezifizie-
ren die Aufgabe eines Widgets. TracesTo gibt an, auf welches Objekt des Diskursmodells dieses
Widget verweist. Dazu miissen bzw. diirfen allerdings nicht alle gesetzt sein, sondern es sind nur
spezielle Kombinationen davon zuldssig, wie in Tabelle 3.3 dargestellt. Um dies sicherzustellen,
wird durch das Constraint check structural Ul elements ein jedes Widget auf das Vorhanden-
sein eines giiltigen Musters iiberpriift. Die Tabelleneintrége bedeuten dabei folgendes:

e Ja
Element muss vorhanden sein.

e Nein
Element darf nicht vorhanden sein.

e X
Es ist egal, ob dieses Element vorhanden ist.

e Self
Feld muss einen Basisdatentyp enthalten.

e Formatter
Element muss Formatierungsinformation enthalten.

Besondere Relevanz hat, dass eine gesetzte contentReference immer ein Datum in einem con-
tent-Feld verlangt. Durch die allgemeine Giiltigkeit dieser Einschrénkung und den Umstand,
dass sich dieses Framework weiterentwickelt und die definierten Muster ihre Giiltigkeit auch ver-
lieren kénnen und dadurch abgeschaltet bzw. angepasst werden miissen, wurde hierfiir ein eigenes
Constraint contentReference set implies content set erstellt, obwohl dieses eine Modellele-
mentbeziehung iiberpriift, welche auch durch das zuvor genannte Constraint iiberpriift ist.

INPUTWIDGETS und OUTPUTWIDGETS stellen konkrete Spezialisierungen der Klasse WIDGET
dar und werden als solche bei der Transformation eines Diskursmodells in ein Structural UI-
Modell verwendet. Sie dienen bei der Transformation Basisregeln als zwischenzeitliche Platzhalter
und werden spéter durch speziellere Transformationsregeln in weitere Spezialisierungen von IN-
PUTWIDGETS und OUTPUTWIDCETS umgewandelt. Schligt diese Umwandlung fehl oder wurde
vergessen, eine derartige Transformationsregel zu implementieren, kann es vorkommen, dass sich
ein INPUTWIDGET oder ein OUTPUTWIDGET im Structural UI-Modell befindet. Da aus diesen
kein Code generiert werden kann, werden sie durch das Constraint no input/output Widgets
aufgezeigt.

Es liegt auf der Hand, dass durch jede Eingabe des Benutzers eine Aktion im Programm aus-
gelost werden muss. Diese wird im Structural Ul-Modell durch ein Event-Objekt reprisentiert

47

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Content Ja

ContentReference Ja

ContentSpecification X Content Nein
Text Nein ContentReference Nein
TracesTo Ja ContentSpecification Nein
Content Nein Text Ja
ContentReference Nein TracesTo Ja
ContentSpecification Self Content Ja
Text Nein ContentReference Nein
TracesTo Ja ContentSpecification Ja
Content Nein Text Nein
ContentReference Nein TracesTo Ja
ContentSpecification Self

Text Formatter

TracesTo Ja

Tabelle 3.3: Giiltige Widget-Muster

und ein jedes INPUTWIDGET muss ein solches besitzen. Da dieses im Structural UI-Muster der
Transformationsregeln im Allgemeinen nicht vorhanden ist, schlieft sich hier eine Realisierung
dieses Constraints durch einen entsprechenden Eintrag im ECore-Modell aus und wurde in in-
put widget must have event realisiert. Hier sei nochmals auf den Umstand verwiesen, dass
ECore-Modell- Constraints immer iiberpriift werden, und auch in den Preferences nicht abgeschal-
tet werden kénnen. Da in den Transformationsregeln Structural Ul-Elemente verwendet werden,
wiirden diese auch in den Transformationsregeln hinsichtlich der Erfiillung ihrer Modellintegri-
tétskriterien gepriift werden.

Einen Sonderfall stellt die Klasse LISTWIDGET dar, da sich dieses sowohl von der Klasse INPUT-
WIDGET als auch von Klasse PANEL ableitet. Es wird zum Einen als Liste, aus welcher ein oder
mehrere Eintrige ausgewdhlt werden kénnen, verwendet. Zum Anderen kann es auch ein PANEL
darstellen. Auf diese Weise kann mit LISTWIDGETS z.B. eine Liste von Produkticons, von denen
eines durch Klicken ausgewdhlt und verarbeitet wird, realisiert werden, aber auch eine Liste von
Checkboxen, deren Auswahl mit einem Button abgeschickt wird. Welche Darstellungsform verwen-
det wird, hingt vom Typ des Communicative Acts ab, aus welchem das Listwidget kreiert wird.
So soll zur Darstellung eines Informing mit mehreren Werten eine Liste erstellt werden, wahrend
aus einer Closed Question eine Auswahl aus einer Liste und eine Moglichkeit, diese abzusenden,
vorgesehen wird.

Die Darstellungsform wird durch die Eigenschaft renderingType festgelegt, welcher die Werte
LIST, PANEL und FOLDOUT annehmen kann. Je nach Verwendungsform sind andere Parameter
erforderlich. Als Panel muss es ein InputWidget besitzen, was durch list panel must have
input widget iiberpriift wird. Als Liste muss ihm ein Fvent zugeordnet sein, durch list must
have event except panel iiberpriift und darf nur eine Spalte besitzen, welche in der Eigenschaft
colNumber festgelegt und durch das Constraint list panel must have input widget iiberpriift
wird.

48

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

3.4 Evaluierung der Modellpriifung

Eine Meta-Priifung, d.h. eine Uberpriifung der Constraints, welche die Modelle priifen, erfolgte
auf den Modellen bestehender Applikationen. Diese sollten als funktionierende Projekte keine
Fehler bei der Modellintegritdtspriifung erzeugen. In den Fillen, wo dies doch passierte, wurden
die Fehler iiberpriift und deren Ursache ermittelt. Anschliefsend wurde das Constraint, welches
den Fehler ausgelost hat, an Sonderfille angepasst oder das Modell richtig gestellt.

Falsch positive Ergebnisse, d.h. wenn durch die Modellpriifung ein Error entdeckt wird, obwohl
kein Fehler vorhanden ist, stellen ein schwerwiegendes Problem dar. Dies kann zum FEinen da-
zu fithren, dass Zeit auf die ,Fehlerbehebung“ verwendet wird, obwohl das Modell korrekt ist.
Zum Anderen kann durch die ,Fehlerbehebung” bzw. Workarounds das Modell komplizierter und
schwerer verstindlich werden. Allerdings wiirde eine vollstindige Meta-Priifung der implemen-
tierten Constraints die Priifung aller moglichen giiltigen Kombinationen von Modellelementen
erfordern, was Aufgrund der hohen Anzahl nicht méglich ist.

Auf der anderen Seite stehen falsch negative Ergebnisse, wenn also die Uberpriifung einen Fehler
yibersieht”. Dies muss nicht notwendigerweise zu einem Absturz des Programmes fiihren, es kann
auch in der falschen Darstellung im Ul resultieren oder gar nicht bemerkbar sein. Eine vollstdndige
Meta-Priifung durchzufiihren ist hier nicht méglich, da dazu alle méglichen Objektkombinationen
hinsichtlich ihrer Giiltigkeit evaluiert werden miissten. Es kénnen allerdings Modelle kreiert wer-
den, welche bestimmte Fehler enthalten. Wenn diese durch die Modellintegritdtskriteriumspriifung
gefunden werden, kann das korrekte Erkennen von Fehlern in einem gewissen Umfang angenom-
men werden.

Vom Online Shop Beispiel wurden fiir jede Gruppe von Constraints Modelle abgeleitet und in diese
den Constraints entsprechende Fehler eingebaut, welche dann durch eine Modellintegritatspriifung
gefunden wurden. Damit kann ein grundlegendes Funktionieren der implementierten Constraints
angenommen werden, wobei allerdings nicht alle méglichen Félle abgedeckt werden.

Fiir die Evaluierung wurden sechs bestehende Modelle verwendet:

e Online Shop

Verhandlungsunterstiitzung

Flightbooking

Commrob-Kassa

Commrob-Roboter

Bike Rental

Die ersten flinf Modelle wurden bereits zu User Interfaces gerendert. Deren Kommunikationsmo-
delle, Regelmodelle und Structural UI-Modelle wurden {iberpriift.

Das Kommunikationsmodell Bike Rental stellt einen ersten Entwurf eines Kommunikationsmodells
durch zwei erfahrene Benutzer dar. Dieses wurde ohne die Modellpriifung zu benutzen erstellt und
wurde noch nicht in ein User Interface gerendert. An diesem Modell lésst sich sehen, welche Fehler
selbst erfahrenen Benutzern machen und wie diese durch die Modellpriifung unterstiitzt werden
kénnen.

49

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

3.4.1 Evaluierung bereits gerenderter Modelle

Dies folgenden fiinf Modelle wurden bereits zu User Interfaces gerendert, daher sollten diese Mo-
delle keine Fehler enthalten. Damit aus diesen Modellen User Interfaces generiert werden konnten,
wurden in diesen Modellen bereits Fehler behoben. Deren Kommunikationsmodelle, Regelmodelle
und Structural UI-Modelle wurden iiberpriift.

Online Shop
Verhandlungsunterstiitzung
Flightbooking
Commrob-Kassa

Commrob-Roboter

Kommunikationsmodelle
Die Modellpriifung hat die folgenden Errors und Warnings aufgezeigt:

1x vergessene Attribute und Parameter in Content-Objekten
Es wurde ein fehlerhaftes Content-Objekt aufgezeigt, welches richtig gestellt wurde.

1x Verwendung falscher Link-Typen
Dies ist durch die Anderung von Anforderungen an Modelle bzw. die Anderung der Software
zu erklédren.

1x Alternative ohne Agent

Durch eine Anderung des UCP-Frameworks wurde das neue Konzept der Mized Initiative
eingefithrt, sodass die Relation ALTERNATIVE keinen Agent mehr bendtigt. Das Modell
wurde an die neue Gegebenheit angepasst.

13x Inserted Sequences ohne Action- und Domain of Discourse-Modelle

Durch eine Anderung des UCP-Frameworks miissen Inserted Sequences jetzt alle fiir sie rele-
vanten Action- und Domain of Discourse-Modelle eingetragen haben. Durch eine Anderung
des entsprechenden Constraints wird diesem Umstand entsprochen.

Structural UI-Modelle
Die Priifung ergab folgende Errors und Warnings:

e 11x Style Name nicht unique

Das style heading-Objekt war im Metamodell als unique und id definiert. Diese Eigen-
schaften wurden auf false gesetzt, da dies nicht den Anforderungen entspricht.

e 1x Radiobutton-Eigenschaft selected nicht gesetzt

Die verpflichtende Eigenschaft selected von Radiobuttons in Kombination mit dem Fehlen
eines default values war Ursache dieses Fehlers. Er konnte durch den Eintrag eines default
values im Metamodell behoben werden.

50

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

1x Adjacency Pair mit den Communicative Acts Closed Question und Answer kreierte kein
List-Widget.

Ein Communicative Act-Answer kreierte kein List- Widget. Durch eine spezielle Regel wurde
jedoch eine andere Darstellung einer Liste erzeugt.

e 3x Do_mnot_render-Regeln kreieren keine Widgets
Do_not_render-Regeln sind fiir Spezialfille geschaffen worden, in welchen keine Widgets
erzeugt werden diirfen.

e 3x Output Widget im Structural Ul-Modell
Nach einer Transformation in ein Structural UI-Modell diirfen sich keine Output Widgets
mehr in diesem befinden. Es sind nur Spezialisierungen der Klasse OUTPUTWIDGET erlaubt.
Deren Vorhandensein zeigt einen Fehler bei der Transformation auf und l&sst darauf schlie-
fsen, dass eine Regel im zweiten Transformationsschritt nicht angewandt wurde, wodurch ein
Target-Objekt nicht korrekt erstellt wurde.

o 2x Listwidget ohne Input Widget
Wenn wie in diesen beiden Féllen ein List-Widget lediglich zur Darstellung einer Liste und
nicht zur Auswahl aus einer solchen verwendet wird, dann ist das Nichtvorhandensein eines
Input-Widgets korrekt.

e 21x TracesTo verweist auf kein Objekt oder ein falsches Objekt

Dies zeigt einen Fehler bei der Transformation auf und l&sst darauf schlieken, dass eine
Regel angewandt wurde, allerdings beim Auflosen der Referenzen auf das Diskursmodell ein
Fehler passiert ist. Zum Teil ist dies durch eine Anderung des UCP-Frameworks zu erkliren,
da sich durch die Einfiilhrung eines des Screen Models eine neue Top-Level-Struktur von
Structural UI-Modellen ergibt. Dieses Screen Model wird automatisch erstellt und seine
Objekte verweisen nicht auf Diskursmodell-Objekte. Daher wurde das Constraint geindert,
welches iiberpriift, ob jedes TracesTo-Objekt im Diskursmodell enthalten ist und es liefert
nun keinen Error mehr sondern eine Warning.

Regelmodelle

Es besteht die Moglichkeit neben den allgemeinen Transformationsregeln auch spezielle Transfor-
mationsregeln zu verwenden, welche fiir ein bestimmtes Kommunikationsmodell erstellt wurden.
Fehler in Transformationsregeln miissen nicht zwangsldufig zu fehlerhaften Structural UI-Modellen
fiihren, da nicht alle angewendet werden, siehe Kapitel 2.2.2.2. Eine Priifung der allgemeinen
Transformationsregeln und der speziellen Transformationsregeln, sofern welche vorhanden waren,
ergab folgende Errors und Warnings:

e 33x keine Namen fiir Constraints in Second-Level-Regeln
Namen sind optionale Eigenschaften, daher sind diese Modellintegritdtsverletzungen ledig-
lich Warnings. Den betroffenen Regeln wurde ein Name zur besseren Versténdlichkeit gege-
ben.

e 1x kein Mapping-Source-Objekt
Fehlende Mapping-Source-Objekte sind schwerwiegende Fehler, daher wurde diese Regel
richtig gestellt.

e 2x kein Mapping- Target-Objekt
Fehlende Mapping-Target-Objekte sind schwerwiegende Fehler, daher wurde diese Regel
richtig gestellt.

51

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

e 2X Mapping-Source-Objekt oder Mapping-Target-Objekt nicht Teil des Source-
Diskursmusters oder Target-Structural UI-Musters
Fine Regel darf nur Beziehungen zwischen Diskursmodellobjekten und Structural Ul-
Modellobjekten herstellen, welche in ihren Diskurs- und Structural UI-Mustern angegeben
sind. Daher wurden diese Fehler richtiggestellt.

3.4.2 Evaluierung des Bike Rental Kommunikationsmodells

Das Kommunikationsmodell Bike Rental stellt einen ersten Entwurf eines Kommunikationsmodells
durch zwei erfahrene Benutzer dar. Dieses wurde ohne die Modellpriifung zu benutzen erstellt und
wurde noch nicht in ein User Interface gerendert. An diesem Modell 14sst sich sehen, welche Fehler
selbst erfahrenen Benutzern machen und wie diese durch die Modellpriifung unterstiitzt werden
konnen. Ein Ausschnitt des Bike Rental-Diskursmodells ist in Abbildung 3.5 dargestellt. Bei der
Modellpriifung ergaben sich folgende Errors:

INSERTED SEQUENCE RENT A
BIKE:

bikedvailable == true &8 not cancel

&1 Alternative
O

IF UNTIL - top: check if bike is
available

ALTERMATIVE: either cancel
request (end inserted sequence)
Or.

Sent
Rening

-~ Informing (rentBike3)
noBikeAvailable

IF UNTIL - lower: ask for

username and password... . .
~~.Closing
T
T,

O‘f:‘enin g

e e’;ing
-+ OpenQuestion (rentBikel)

& Request (rentBike6) ““
cancel [Accept (rentBike7)

getUserData E}‘os ing

.'lrl

=l Answer (rentBike2) Qpening

. ClosedQuestion (rentBike4)
™| availableBikes

.

/Qﬁ’éning Clesing = Answer (rentBike5)

-

(" ClosedQuestion (rentBiked) | | = Answer (rentBike10)

selectRentalTerminal

Abbildung 3.5: Ausschnitt aus dem Diskursmodell Bike Rental

e 2x Opening Communicative Act Request hat keinen entsprechenden Closing Communicative
Act. Erlaubte Kombinationen sind in Tabelle 2.1 angegeben.

e 1x Conditon, siche Abbildung 3.5, hat weder Then- noch Else-Zweig, besitzt aber einen
Tree-Zweig.

e 4x Fine Action oder eine Notification befindet sich nicht in den Action-Modellen oder wurde
nicht vom Basic-Modell abgeleitet. Ein Beispiel dafiir ist die Action selectRentalTerminal
in der ClosedQuestion(rentBike9), welche sich nicht im Action-Modell bikeRental befin-
det.

52

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

e 4x Open Question hat kein get oder update im Content. Dies ist zum Beispiel bei der
Action getUserData in der OpenQuestion(rentBikel) der Fall, da diese nicht von der
Basic-Modell Action get abgeleitet wurde.

e 4x Es traten Fehler in Content-Objekten auf, welche in diesem Ausschnitt des Bike Rental
Diskurses nicht ersichtlich sind.

e 1x IfUntil hat keinen Agent. Dieser Fehler befindet sich in einem anderen Teil des Diskurs-
modells.

e 1x Zwei Root-Nodes befinden sich in einem Diskurs. Diese sind das obere IfUntil und die
Sequence.

e 3x Conditon eines Then-Links ist leer. Dies ist zum Beispiel beim oberen IfUntil der Fall.

e 1x Then-Link hat kein Child-Objekt. Dieser Fehler ist im graphischen Diskursedtior nicht
ersichtlich.

o 1x Tree-Link befindet sich nicht an einem IfUntil. Dies ist der Tree-Link an der Condition.

Bei der Modellpriifung ergaben sich folgende Warnings:

e 30x Es wurde kein Name fiir ein Modellobjekt vergeben. Der Name ist nicht zu verwechseln
mit der Id eines Modellobjektes, welche durch runde Klammern gekennzeichnet ist.

e 4x Die Eigenschaft Goal eines Diskurses oder einer inserted Sequence enthilt einen Leer-
string.

e 4x Es wurde eine mégliche Endlosschleife gefunden. Dies kénnte zum Beispiel im unteren
IfUntil der Fall sein, da dieses keinen Then-Link besitzt.

e Hx LEs wurde in einem Tree-Link keine Wiederholungsbedingung definiert.

3.4.3 Ergebnisse der Evaluierung

Die Errors und Warnings aus allen Modellen sind in Abbildung 3.6 zusammengefasst. Hierbei wur-
den nur Uberpriifungsergebnisse beachtet, welche tatsichlich Modellfehler darstellen und Uber-
priiffungsergebnisse, welche zu einer Anderung von Constraints fithrten oder durch Anderungen
des Frameworks bedingt sind vernachlassigt.

Die grofte Fehlergruppe bilden mit 34,8% die Fehler im Structural UI-Modell in den TracesTo-
Objekten. Diese entstehen &hnlich wie die Fehlergruppe der nicht aufgelosten Widgets (6,5%) bei
der Transformation eines Diskursmodelles zu einem Structural UI-Modell, wenn eine Regel nicht
oder nicht korrekt ausgefiihrt wird. Damit machen Transformationsfehler 41,3% der gesamten
Fehler aus. Leider ldsst sich nach der Transformation nicht mehr sagen, welche Regeln zu einem
konkreten Structural UlI-Modellobjekt gefiihrt haben. Hier wire es wiinschenswert, mehr Mog-
lichkeiten zur Fehlerbehandlung und Fehlersuche zur Verfiigung zu haben, um nicht auf Logging-
oder Debugergebnisse angewiesen zu sein. s wére hier zum Beispiel vorstellbar, in jedem Struc-
tural UI-Objekt zu speichern, welche Regel dieses kreiert bzw. modifiziert hat. Damit wiirde ein
einfacheres Nachvollziehen der Transformation moglich sein.

53

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Error Warning

Diskursmodellfehler:
Fehler im Content
Fehlerim Actionmodell
FehlerinLink Bedingungen
kein Name 85,1%
FehlerinLink - Child/Parent

ungiiltige CA Kombination

2 Root Nodes in einem Diskurs Linkbedingung I 5,7%

M Error B Warning

Kein Agent definiert

Structural Ul-Modellfehler:

mégliche Endlossschleifen 4,6%

kein Goal F 4,6%

0.0% 100% 20,0% 300% 40.0% 0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

Fehlerin TracesTo 34,8%

nicht aufgeléste Widgets

Regelmodellfehler:

Fehlerin Mappings 10,9%

Abbildung 3.6: Evaluierungsergebnisse

Die zweitgrofte Fehlergruppe bilden mit 19,6% die Fehler in Content-Objekten. Diese sind ver-
wandt mit den Fehlern im Action-Modell mit 8,7%. Durch die Priifung werden allerdings nur
strukturelle Fehler im Content erkannt, sodass die tatséchliche Fehleranzahl noch héher liegen
kann.

Die drittgrokte Fehlerguppe sind mit 10,9% Mapping-Fehler in Regeln. Diese kénnen zu fehlerhaf-
ten Structural UI-Widgets fithren, wenn diese Regel verwendet wird. Die nicht aufgeldsten Input-
oder Qutput- Widgets kénnen so entstanden sein.

Diskursmodellfehler sind Fehler, welche bei der Diskursmodellerstellung passiert sind. Obwohl es
schwerwiegende Fehler sind, kénnen sie rasch behoben werden, da die Modellpriifung die fehler-
haften Modellelemente angibt. Damit sind 47,8% aller Fehler im Diskursmodell entdeckt worden.

Die Gruppe der Warnings wird mit 85,1% angefiihrt von der nicht vorhandenen Benennung von
Modellobjekten. Dies ist der Definition eines Goals (4,6%), d.h. eines Ziels, welches durch einen
Diskurs erreicht werden soll, dhnlich. Obwohl diese keine kritischen Fehler darstellen, so sind die
Vergabe guter Namen und die Definition von Diskurszielen der Verstandlichkeit eines Modells sehr
zutraglich.

Die restlichen Warnings sind durch Links bedingt. Zum Einen werden mégliche ,Endlosschleifen®
(4,6%) aufgezeigt, welche in den vorliegenden Modellen durchaus gewollt sind. Zum Anderen
wurde in Tree-Links keine Bedingung angegeben (4,6%).

3.4.4 Interpretation der Ergebnisse

Es konnen fehlerhafte Diskursmodelle modelliert werden, da der Diskurseditor die Modellierung
von nicht transformierbaren Objekten und Objektstrukturen erlaubt, aus welchen kein Structural
UI-Modell erstellt werden kann. Wenn die Modellpriifung keinen Fehler liefert und ein Diskurs
dennoch nicht transformiert werden kann, so befinden sich die Fehler mit hoher Wahrscheinlichkeit
in den Link-Bedingungen oder in den Content-Objekten, welche durch diese Modellpriifung nur
oberflachlich auf das Vorhandensein bestimmter Strukturen gepriift werden.

54

Realisierung von Modellintegritdtspriifungen fiir das UCP-Framework

Ohne Modellpriifung kénnten sich Input- und Qutput-Widgets im Structural UI-Modell befinden,
welche nicht dargestellt werden kénnen. TracesTo-Objekte kénnten nicht aufgelést worden sein,
wodurch Widgets auf falsche Elemente des Diskursmodells zeigen. Falsch eingetragene Target-
Objekte kdnnen dadurch entstehen, dass Regeln nicht angewendet wurden.

Diese entdeckten Fehler kénnen dazu fiithren, dass das generierte User Interface Fehler enthilt,
oder ein Structural UI-Modell nicht zu einem User Interface gerendert werden kann. Durch die
Modellpriifung werden haufig vorkommende Modellfehler erkannt und die Modellobjekte auf das
Vorhandensein einer gewissen Struktur hin gepriift. Eine Fehlerfreiheit kann allerdings nicht si-
chergestellt werden.

Alle Structural UI-Modelle, welche bereits gerendert werden konnten, passierten die Modellprii-
fung. Es wurden zwar einige Errors und Warnings ausgeben, allerdings sind diese durch die An-
derung des UCP-Frameworks zu erkldren. Die entsprechenden Constraints wurden an die neuen
Gegebenheiten angepasst. Es ist zu beachten, dass diese Modelle von Personen erstellt wurden,
welche mit dem UCP-Framework vertraut sind. Durch das Rendern und dem Vergleich mit dem
intendierten Ergebnis wurden bereits viele Modellfehler behoben.

Im Zuge der Evaluierung und der Meta-Priifung der Modelle habe ich selbst einige Modelle erstellt.
Obwohl ich mit den Regeln vertraut bin, sind mir doch wesentlich mehr Fehler relativ zur Anzahl
der modellierten Elemente unterlaufen, als im Bike Rental-Modell vorgefunden wurden. Daraus
schliefe ich, dass die Modellierung zu einem gewissen Teil auf Erfahrungswerten beruht und denke,
dass Anfénger noch in viel stdrkerem Ausmalt von der Modellpriifung profitieren kénnen.

Zur Fehlersuche muss nun nicht jedes mal eine komplette Transformation der Modelle vorgenom-
men werden. Die Modellpriifung stellt ein Werkzeug dar, um Copy-Paste-Fehler zu finden.

Das Vorhandensein dieser Modellpriifung hat die Entwickler motiviert, eine automatisierte Mo-
dellpriifung vor der Transformation zu implementieren, welche als neue Funktionalitit ins UCP-
Framework integriert wurde.

Es wurden ca. drei Fehler pro Modell entdeckt, wobei dies sehr hiufig Fehler in Links waren.
Eine Umwandlung der entsprechenden Batch-Constraints in Live-Constraints und damit deren
Priifung zur Laufzeit wére eine Moglichkeit, diese Fehler sofort bei der Diskursmodellerstellung
abzufangen.

Die Weiterentwicklung des UCP-Frameworks fiihrte dazu, dass einige Constraints angepasst wer-
den mussten. Da Inserted Sequences nun Action- und Domain of Discourse-Modelle haben miissen,
wurde das Constraint, welches zuvor deren Vorhandensein verbat, zu einer Uberpriifung, ob diese
beiden Modelle definiert sind.

Das Konzept der Mized Initiative wurde eingefiithrt, welches erlaubt, dass in der Relation
Alternative nun beide Agenten Entscheidungen treffen diirfen, wihrend diese zuvor einen Agen-
ten zugeordnet haben mussten.

Als gute Vorgehensweise empfiehlt es sich, dass parallel zur Erstellung in gewissen Zeitabstinden
Modellpriifungen durchgefiihrt werden. Dadurch ist eine stindige Anpassung und eine frithzeitige
Erkennung von Fehlern moglich, sodass Folgefehler vermieden werden kénnen und schlussendlich
weniger Korrektur notig ist.

55

4 ZUSAMMENFASSUNG UND AUSBLICK

Es folgen eine Zusammenfassung dieser Arbeit und ein Ausblick auf mdégliche Weiterentwicklungen.

4.1 Zusammenfassung

Der Zweck des UCP-Frameworks ist eine automatische Generierung eines User Interfaces aus
einem Kommunikationsmodell. Dies geschieht durch einen zweistufigen Prozess, wobei ein Struc-
tural UI-Modell als Zwischenergebnis dient, aus welchem User Interfaces generiert werden kénnen.
Die Transformation eines Kommunikationsmodells in ein Structural UI-Modell wird anhand von
Transformationsregeln durchgefiihrt.

Damit ein schnelleres Auffinden von Fehlern in diesen Modellen méglich wird, wurden die Meta-
modelle von Diskursmodellen, Structural UI-Modellen und Transformationsregeln um Modellin-
tegritétskriterien erweitert, welche Einschrinkungen darstellen, was in diesen Modellen modelliert
werden kann.

Mit Hilfe des Validation Frameworks von EMFE konnen diese Modelle auf die Einhaltung ihrer
Modellintegritatskriterien hin gepriift und das Resultat dem Benutzer angezeigt werden. Das EMF
Validation Framework wurde zur Implementierung gewahlt, da dieses die Infrastruktur fiir eine
Modellpriifung bietet und mit dem UCP-Framework, welches auf Basis des EMF implementiert
wurde, gut zusammenarbeitet.

Die Implementierung der Modellintegritatskriterien erfolgte als Constraints im Validation Frame-
work. Dabei wurden zur Implementierung die Sprachen OCL und Java gewéhlt. Zum Einen wurde
OCL benutzt, da sich damit schnell einfache Objektbeziehungen und Wertebereiche von Objek-
teigenschaften iiberpriifen lassen. Zum Anderen wurde Java verwendet, um komplexe Constraints
zu implementieren, welche auferhalb des Sprachumfangs von OCL liegen. Durch das Validati-
on Framework werden Modelle auch hinsichtlich der Erfiillung der Modelldefinitionen, welche in
den Metamodellen beschrieben werden, gepriift. Dadurch konnten auch durch die Anpassung der
Metamodelle zu iiberpriifende Modellintegritétskriterien implementiert werden.

Diese Constraints sind Teil eines Validation-Adapters, welcher fiir die Modellintegritdtspriifung
zustandig ist. Es wurde fiir Diskursmodelle, Structural UI-Modelle und Transformationsregeln
ein eigener Validation-Adapter erstellt, in welchen die die bendtigten Constraints implementiert
wurden. Diese Adapter wurden mit dem UCP-Framework getestet und in dieses integriert.

Dadurch besteht nun im UCP-Framework die Moglichkeit, Diskursmodelle, Structural UI-Modelle
und Transformationsregeln auf Modellintegritdtskonformheit zu priifen.

56

Zusammenfassung und Ausblick

4.2 Ausblick

Diese Uberpriifung soll nun dazu fithren, dass korrekte Modelle rascher erstellt werden kénnen
und damit ein schnelleres Erstellen eines User Interfaces bzw. einer Applikation mdéglich wird.

Je mehr man modelliert, desto mehr Punkte entdeckt man, an denen noch weitere Verfeinerun-
gen der Metamodelle vorgenommen werden kénnten. Auch wenn von der Implementierung von
zahlreichen mdglichen weiteren Warnungen Abstand genommen wurde, da diese in ihrer Masse
kaum mehr wahrgenommen wiirden, haben sich einige Punkte gezeigt, an denen eine sinnvolle
Weiterentwicklung moglich wére.

Eine Modellintegritdtspriifung im graphischen Editor und ein Markieren fehlerhafter Elemente
darin, wiirde gemeinsam mit der Umwandlung geeigneter Constraints in Live-Constraints die
Modellierung sinnvoll unterstiitzen.

Eine Uberpriifung der Conditions und RepeatConditions von Links, ob diese korrekt geparst wer-
den konnten und eine Uberpriifung des Kommunikationsablaufs, ob alle Variablen, welche fiir diese
Conditions bendtigt werden, einen Wert zugewiesen bekommen haben, stellt eine weitere mogliche
Weiterentwicklung dar.

Gewisse Modellelemente bendtigen gewisse Kombinationen von Modellelementen. So miissen zum
Beispiel in den Unterzweigen eines Joint alle Opening Communicative Acts denselben Agenten
besitzen, damit dieser Kommunikationsablauf in einem Fenster dargestellt werden kann. Dazu
muss allerdings noch evaluiert werden, welche Relationen derartiges verlangen, wie die erlaub-
ten Muster aussehen und welche Modellelemente hier sinnvoll in Verbindung gebracht werden
miissen. Generell kénnte man alle mdglichen Kombinationen von Modellelementen untersuchen,
ob diese erlaubt bzw. sinnvoll sind. Dies hétte allerdings den Rahmen dieser Arbeit bei Weitem
iiberschritten.

Bei der Entwicklung der Regel- Constraints hat sich gezeigt, dass diese sowohl vereinfacht als auch
enger definiert werden kénnten. In der jetzigen Form sind diese an grobe Muster gebunden. Diese
gehen von heuristischen Annahmen iiber erwartete und sinnvolle Muster an Adjacency Pairs aus.
Es konnten hier weitere Einschrankungen definiert werden, welche Elemente was erzeugen. Da das
UCP-Framework allerdings weiterentwickelt wird, ist zum jetzigen Zeitpunkt noch nicht ersicht-
lich, wie dies genau aussehen werden. Die in der vorliegenden Arbeit entwickelten Constraints
bieten einen Rahmen, um die h&ufigsten Fehler zu entdecken.

57

A CONSTRAINTS

Im Folgenden eine Auflistung der implementierten Constraints.

Die Error Nummer identifiziert jedes Constraint eindeutig und ist gleich dem Status Code. Wobei
die ersten beiden Ziffern die Gruppe angeben, zu welcher dieses Constraint gehort und die letzten
beiden Ziffern die Constraints dieser Gruppe durchnummerieren.

Dann folgen der Constraint-Name und darunter die durch dieses Constraint ausgegebene Fehler-
meldung. In der Fehlermeldung bedeutete {0}, dass an dieser Stelle das fehlerhafte Modellobjekt
ausgegeben wird.

In der Spalte lang findet sich die Art des Constraints. Dies kann entweder OCL, Java oder ECore
sein.

Unter Target sind die Modellobjekte, auf denen dieses Constraint ausgefiihrt wird, aufgelistet.

Wenn es sich um ein OCL-Constraint handelt, findet sich in der letzten Spalte der OCL-Code.
Im Fall eines Java- Constraints ist die Klasse angegeben, in welcher dieses implementiert wurde.
Sollte es sich um ein ECore-Constraint handeln, bleibt diese Spalte frei.

58

69

errornr name and error message lang target oclcode or java class

01xx warnings
0101 name not empty ocl SenderAgent name.size() >0
{0} has no name Node
CommunicativeAct
Discourse
0102 goal not empty ocl Discourse self.goal -> size() >0
{0} has no goal
0103 tree has empty repeat condition ocl IfUntil self.children -> select(type = LinkType::TREE) ->
{0} can be an endless loop forAll(l:Link|
if (l.repeatCondition.size()=0).ocllIsInvalid()
then false
else |.repeatCondition.size()>0
endif)
0104 else needs a then ocl IfUntil self.children -> select(type = LinkType::ELSE) -> size() > 0 implies
{0} has else without then self.children -> select(type = LinkType::THEN) -> size() > 0
0105 result 1 n ocl Result (self.children -> forAll(l:Link | l.type = LinkType::NUCLEUS or |.type = LinkType::SATELLITE))
{0} has no satellite and (self.children -> select(l:Link|l.type = LinkType::NUCLEUS) -> size() = 1)
and (self.children -> select(l:Link|l.type = LinkType::SATELLITE) -> size() = 0)
02xx Adjacency Pairs
0201 AP must have an opening act ocl AdjacencyPair self.openingCommunicativeAct -> size() = 1
{0} has no opening communicative Act
0202 check closing CA ocl AdjacencyPair (self.closingCommunicativeActs -> size() = 0) implies
{0} has no closing CA or opening CA is not Informing (self.openingCommunicativeAct.ocllsTypeOf(Informing))
0203 diffrent opening and closing CA - Agent ocl AdjacencyPair if (self.openingCommunicativeAct.ocllsTypeOf(Informing).not())
{0} same opening and closing agent forAll(belongsTo <> self.openingCommunicativeAct.belongsTo)
then self.closingCommunicativeActs ->
else true
endif
03xx Communicative Acts
0301 CA must have an agent ocl CommunicativeAct self.belongsTo -> size() = 1
{0} has no agent
0302 check content not empty ocl CommunicativeAct if (self.content.specification.size() > 0).ocllsInvalid()
{0} has no valid content then (self.ocllsTypeOf(Accept) or self.ocllsTypeOf(Answer)

or self.ocllsTypeOf(Ok) or self.ocllsTypeOf(Reject))
else self.content.specification.size() > 0 endif
0303 opening xor closing ocl CommunicativeAct (self.closingCommunicativeActParent -> size() = 1)
{0} must be openingCA xor closingCA xor (self.openingCommunicativeActParent -> size() = 1)

09

04xx

0401

0402

0403

0404

0405

05xx
0501

0502

0503

0504

0505

06xx

0601

0602

Links
then must hava a condition
then must hava a condition

then, else parent ifuntil or condition

{0} has no parent of type ifuntil or condition
tree parent ifuntil

{0} has no parent of type ifuntil

parent child set

{0} hasnt parent and child

in tree condition must not be set

{0} tree must have repeat conditon but no condition

adjacent Communicative Acts
openingCA of type cQ oQ Req Off Inf
{0} - openingCA not of type cQ 0Q Req Off Inf

closingCA of type Answ Acc Rej ok
{0} - closingCA not of type Answ Acc Rej ok

Q adjacent to Answ

{0} - Question not adjacent to Answer
req adjacent to inf acc rej

{0} - request not adjacent to acc rej Ok

Off adjacent to acc rej Ok
{0} - Offer not adjacent to Accept or Reject or Ok

Relations

sequence ordered

{0} is not properly ordered

ifuntil 1 tree 0..1 then 0..1 else

{0} hasnt 1 tree and 0..1 then 0..1 else

ocl

ocl

ocl

ocl

ocl

ocl

ocl

ocl

ocl

ocl

ocl

ocl

Link

Link
link
Link

Link

AdjacencyPair

AdjacencyPair

AdjacencyPair

AdjacencyPair

AdjacencyPair

Sequence

IfUntil

self.type = LinkType::THEN implies

if (self.condition.size() > 0).oclIsInvalid()

then false else self.condition.size() > 0 endif

(type = LinkType::THEN or type = LinkType::ELSE) implies
(parent.ocllsTypeOf(IfUntil) or parent.oclisTypeOf(Condition))
(type = LinkType::TREE) implies (parent.ocllsTypeOf(IfUntil))

(self.parent -> size() = 1) and (self.child -> size() = 1)

if (type = LinkType::TREE)
then
if (condition.ocllsInvalid())
then true
else condition.size()=0
endif
else true
endif

self.openingCommunicativeAct.ocllsKindOf(Question) or
self.openingCommunicativeAct.ocllsTypeOf(Request) or
self.openingCommunicativeAct.ocllsTypeOf(Offer) or
self.openingCommunicativeAct.ocllsTypeOf(Informing)
closingCommunicativeActs ->

forAll(ocllsTypeOf(Answer) or ocllsTypeOf(Accept)

or ocllsTypeOf(Reject) or ocllsTypeOf(Ok))
self.openingCommunicativeAct.ocllsKindOf(Question) implies
self.closingCommunicativeActs -> forAll(ocllsTypeOf(Answer))
self.openingCommunicativeAct.ocllsTypeOf(Request) implies
(self.closingCommunicativeActs -> forAll(ocllsTypeOf(Ok)
or ocllsTypeOf(Accept) or ocllsTypeOf(Reject)))
self.openingCommunicativeAct.ocllsTypeOf(Offer) implies
(self.closingCommunicativeActs ->

forAll(oclisTypeOf(Accept) or oclisTypeOf(Reject) or oclisTypeOf(Ok)))

self.children -> forAll(11, 12|11 <> 12 implies |1.condition <> |2.condition)

(self.children -> forAll(l|l.type = LinkType::TREE
or |.type = LinkType::THEN or |.type = LinkType::ELSE))

19

and (self.children -> select(type = LinkType::TREE) -> size() = 1)
and (self.children -> select(type = LinkType::THEN) -> size() < 2)
and (self.children -> select(type = LinkType::ELSE) -> size() < 2)

0603 Condition 1 then 1 else ocl Condition (self.children -> forAll(l|l.type = LinkType::THEN or l.type = LinkType::ELSE))
{0} hasnt 1 then and 1 else and (self.children -> select(type = LinkType::THEN) -> size() = 1)
and (self.children -> select(type = LinkType::ELSE) -> size() = 1)
0604 RSTSingleNucleusRelation 1 n1s ocl Background (self.children -> forAll(l:Link | l.type = LinkType::NUCLEUS or |.type = LinkType::SATELLITE))
{0} hasnt 1 nucleus and 1 satellite Elaboration and (self.children -> select(l:Link|l.type = LinkType::NUCLEUS) -> size() = 1)
Annotation and (self.children -> select(l:Link | l.type = LinkType::SATELLITE) -> size() = 1)
Title
0605 MultiNucleusRelation and Sequence 2..* n ocl Joint (self.children -> forAll(l]l.type = LinkType::NUCLEUS))
{0} hasnt 2..* N Contrast and (self.children -> size() > 1)
Alternative
Sequence
0606 some relations need an agent ocl Elaboration agent.ocllsUndefined().not() or self.oclisTypeOf(Annotation)
{0} has no agent defined IfUntil or self.ocllsTypeOf(Background)
Alternative
Condition
0607 result 1 ns=2..* ocl Result (self.children -> forAll(l:Link | l.type = LinkType::NUCLEUS or |.type = LinkType::SATELLITE))
{0} has more than 1 Satellite and (self.children -> select(l:Link|l.type = LinkType::NUCLEUS) -> size() = 1)

and (self.children -> select(l:Link|l.type = LinkType::SATELLITE) -> size() > 1)

07xx Discourse
0701 verify content objects versus the domain and action 1 java org.ontoucp.discourse.validation.adapter.constraints.ContentCheck
0703 check AM, DM, Agent, Roots java org.ontoucp.discourse.validation.adapter.constraints.CheckDiscourse
0704 check for loops java org.ontoucp.discourse.validation.adapter.constraints.ModelStructure
08xx Ids ids
0802 id not empty and A oder B ocl SenderAgent id="'A"orid ='B'

{0}id must be Aor B
0801 id not empty and not A and not B ocl CA id.size() >0 and id <>'A'and id <> 'B'

{0} id may not be empty and not "A" or "B"
0803 id unique ecore SenderAgent

CA

~ StrucwralUl-Constraints
2001 check structural Ul elements ocl InputWidget (

{0} does not apply to a valid pattern OutputWidget content -> size() = 0 and

contentReference -> size() = 0 and
if contentSpecification -> size() =0

¢9

2002

2003

2004

first level must be choice

first level object isnt Choice
second level must be frame
second level object isnt Frame
input widget must have event
{0} has no event

ocl

ocl

ocl

Widget
Choice

Button
ComboBox
DateTimePicker
TextBox
ImageMap

then true else contentSpecification -> forAll(size() = 0) endif and
if text = null then false else text.size() > 0 endif and
tracesTo ->size() = 1
) or (
content -> size() =1 and
contentReference -> size() = 0 and
if contentSpecification -> size() =0
then false else contentSpecification -> forAll(size() > 0) endif and
if text = null then true else text.size() = 0 endif and
tracesTo ->size() =1
) or (
content ->size() =1 and
contentReference -> size() = 1 and
if text = null then true else text.size() = 0 endif and
tracesTo ->size() =1
) or (
content -> size() = 0 and
contentReference -> size() =0 and
if contentSpecification -> size() =0
then false else contentSpecification -> forAll(size() > 0) endif and
if text = null then true else text.size() = 0 endif and
tracesTo ->size() = 1
) or (
content -> size() = 0 and
contentReference -> size() = 0 and
if contentSpecification -> size() = 0
then false else contentSpecification -> forAll(size() > 0) endif and
if text = null then false else text.size() > 0 endif and
tracesTo ->size() =1
)

self.parent = null implies self.ocllsTypeOf(Choice)
self.parent = null implies self.widgets -> forAll(ocllsTypeOf(Frame))

event -> size() >0

€9

2005

2006

2007

2008

2009

2010

3001

3002

3003

3004

3101

3102

3103

3104
3105

colNumber = 1 except for renderingType Panel ocl
{0}: colNumber !=1 or renderingType not panel

list must have event except panel ocl
{0}: has no event or renderingType not panel

list panel must have input widget ocl
{0} has no input widget

if contentReference set implies contetn set ocl
{0} has no content

no input / output widgets ocl

{0}: just spezialiciations of input or output widgets allowed he OutputWidget

tracesTo ca or node Java
{0} doesnt trace to element of disourse model

mapping soure and target not empty ecore
traces to ca/rel in rule Java
doesnt trace to ca/rel in rule

mapping only on elements of rule Java
{0} maps on a element not in discourse or structuralUl
source and target not empty ecore
check openquestion answer Java
check closedquestion answer Java
check offer request - accept reject Java
check informing Java

check question answer Java

TextField
ListWidget

ListWidget
ListWidget
Widget
InputWidget
Widget
Mapping
Rule

Rule

Rule

Rule

Rule

Rule

Rule
Rule

colNumber = 1 or renderingType = ListRenderingType::PANEL
(self.event -> size() > 0) or renderingType = ListRenderingType::PANEL

renderingType = ListRenderingType::PANEL
implies (widgets -> select(oclIsKindOf(InputWidget)) -> size() > 0)
(contentReference -> size() > 0) implies (content -> size() > 0)

self.ocllsTypeOf(InputWidget).not() and
self.ocllsTypeOf(OutputWidget).not()
org.ontoucp.structuralui.validation.adapter.constraints.checkTracesToCA.java

org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.checkTracesTo.java
org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.checkMapping.java

org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_OQ_A.java
org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_CQ_A.java
org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_OR_AR.java
org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_INF.java
org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_Q_A.java

B DISKURSMODELL-ONLINE SHOP

Es folgt das Diskursmodell des Online Shop Beispiels aus Kapitel 2.2.3.

64

Diskursmodell-Online Shop

P
-
Bdisop
e

(+T) ss=auppybuygspiroidiamsuy ©

y

uadey

Biyuzdg

(0T) 04UIPIEDIPEIDEPIACIHIDMSUY 1)

../.

Abbildung B.1: Diskursmodell Online Shop - Teil 1

65

Diskursmodell-Online Shop

p<(s1npoudjunozpeybuddoys

sy

ln_llll-\
-Bliso|3
"

L
e fuadg
S

L

(9) PNpoIdPIRSIBMSUY

(v) AtoB21e3PNpOIdDBRS JBmsuy @ //

Abbildung B.2: Diskursmodell Online Shop - Teil 2

66

ABBILDUNGSVERZEICHNIS

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6

B.1
B.2

Diskurs-Metamodell o)
RST-Relationen und prozedurale Relationen 7
Communicative Act Taxonomie 9
Der UCP-Transformationsprozess o vt v i i v v oo 12
Structural Ul-Metamodell o0 oo 13
Transformationsregel-Metamodell o000 14
Domain of Discourse-Modell Shop 16
Regel fiir eine Closed Question o 17
Structural Ul - Ergebnis aus Closed Question 17
Ounline Shop - Auswahl der Produktkategorie [Ran08] 18
Ounline Shop - Produktauswahl [RanO8] 18
Online Shop - Eingabe der Kundendaten [Ran08] 19
EMF Modell Generierung [7] L 21
Extension Point - Constraint Bindings 30
Extension Point - Constraint Provider 31
validate()-Methode 33
Zyklus aus Relationeno L o 35
Ausschnitt aus dem Diskursmodell Bike Rental 52
Evaluierungsergebnisse oL Lo e 54
Diskursmodell Online Shop - Teil 1 o ... 65
Diskursmodell Online Shop - Teil 2 66

67

TABELLENVERZEICHNIS

2.1
2.2

3.1
3.2
3.3

Beziehungen zwischen Communicative Acts |[BEFT10] 10
Wahrheitstabellen - dreiwertige Logik (0:false 1:true 7:undefined) [Son03] 23
Links fiir Relationen und prozedurale Relationen 38
Bedingungen fiir den Content abhingig vom Communicative Act Typ. 43
Giiltige Widget-Muster e 48

68

INTERNET REFERENZEN

2]

3]

[4]

6]

7]

8]

Matteo Risoldi Recipe: How To use the Eclipse Validation Framework with OCL constraints
defined in a separate filer http://wiki.eclipse.org/EMF/Validation/Recipes.

Enabling OCL property check in EMF’s generated editor http://smv.unige.ch/members/
risoldi/otherdocs/ocl-enf.

Validation Rule Implementation https://teambruegge.informatik.tu-muenchen.de/
groups/unicase/wiki/10947/Validation_Rule_Implementation.html.

EMF - Eclipse Modelling Framework http://www.eclipse.org/modeling/emf/.

Eclipse documentation - EMF Validation Framework QOuverview EMF Validation Framework
Developer Guide >Programmer’s Guide >Validation Framework Overview http://help.
eclipse.org/galileo/index. jsp.

Lars Vogel Eclipse Modeling Framework (EMF) - Tutorial http://www.vogella.de/
articles/EclipseEMF/article.html. 2010

Assembla K-Made Documentation Emf http://www.assembla.com/wiki/show/Kmade/
Documentation_emf

Wikipedia Design by Contract http://de.wikipedia.org/wiki/Design_by_contract.

69

http://wiki.eclipse.org/EMF/Validation/Recipes
http://smv.unige.ch/members/risoldi/otherdocs/ocl-emf
http://smv.unige.ch/members/risoldi/otherdocs/ocl-emf
https://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/10947/Validation_Rule_Implementation.html
https://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/10947/Validation_Rule_Implementation.html
http://www.eclipse.org/modeling/emf/
http://help.eclipse.org/galileo/index.jsp
http://help.eclipse.org/galileo/index.jsp
http://www.vogella.de/articles/EclipseEMF/article.html
http://www.vogella.de/articles/EclipseEMF/article.html
http://www.assembla.com/wiki/show/Kmade/Documentation_emf
http://www.assembla.com/wiki/show/Kmade/Documentation_emf
http://de.wikipedia.org/wiki/Design_by_contract

WISSENSCHAFTLICHE LITERATUR

[BEF+10]

[BFK08]

[FGOGO7]

[HS08]

[KFK09)

[KKHH04]

[KRR*10]

[Leil0]

[LFG90]

[MTSS]

C. Bogdan, D. Ertl, J. Falb, A. Green, S. Kavaldjian, D. Raneburger, and A. Szép.
Report on development of dialogue design support features. Report, page 26, 2010.

Cristian Bogdan, Jiirgen Falb, Hermann Kaindl, Sevan Kavaldjian, Roman Popp, Hel-
mut Horacek, Edin Arnautovic, and Alexander Szep. Generating an abstract user
interface from a discourse model inspired by human communication. In Proceedings
of the 41st Annual Hawaii International Conference on System Sciences (HICSS-41),
Piscataway, NJ, USA, January 2008. IEEE Computer Society Press.

Lorenz Froihofer, Gerhard Glos, Johannes Osrael, and Karl M. Goeschka. 29th inter-
national conference on software engineering (icse’07). In Overview and Evaluation of
Constraint Validation Approaches in Java, 2007.

Manfred Hennig and Heiko Seeberger. Einfithrung in den Extension Point - Mecha-
nismus von Eclipse. Javaspektrum, 1, 2008.

Sevan Kavaldjian, Jiirgen Falb, and Hermann Kaindl. Generating content presentation
according to purpose. In Proceedings of the 2009 IEEE International Conference on
Systems, Man and Cybernetics (SMC2009), San Antonio, TX, USA, Oct. 2009.

Hermann Kaindl, Stefan Kramer, Mario Hailing, and Vahan Harput. Interactive
metamodel-compliance checking of requirements in a semiformal representation. In
Managing Complexity and Change! - INCOSE 2004 - 14th Annual International Sym-
posium Proceedings, 2004.

S. Kavaldjian, D. Raneburger, R.Popp, M. Leitner, J. Falb, and H. Kaindl. Automated
optimization of user interfaces for screens with limited resolution. In Proceedings of the
MDDAUI’'10 Workshop on Model Driven Development of Advanced User Interfaces,
2010.

Michael Leitner. Space-saving placement using a structural user interface model. Ma-
ster’s thesis, TU Vienna, 2010. Master Thesis, TU Vienna.

Paul Luff, David Frohlich, and Nigel Gilbert. Computers and Conversation. Academic
Press, London, UK, January 1990.

W. C. Mann and S.A. Thompson. Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243-281, 1988.

70

WISSENSCHAFTLICHE LITERATUR WISSENSCHAFTLICHE LITERATUR

[OMGO06] Object Management Group. Object constraint language omg available specification
version 2.0, 2006.

[Ran08] David Raneburger. Automated graphical user interface generation based on an ab-
stract user interface specification. Master’s thesis, TU Vienna, 2008.

[Sea69] J. R. Searle. Speech Acts: An FEssay in the Philosophy of Language. Cambridge
University Press, Cambridge, England, 1969.

[Son03] Rungiu Song. Einfithrung in die Object-Contraint-Language OCL, 2003.

71

	Titlepage
	Einleitung
	Basis der Arbeit
	Diskursmodellierung
	UCP-Framework
	Kommunikationsmodell
	GUI-Generierung
	Beispiel - Shop

	Modellintegritätskriteriumsprüfung
	ECore
	OCL
	Java Constraints
	Validation Framework

	Realisierung von Modellintegritätsprüfungen für das UCP-Framework
	Konzepte und Strategien
	Validation Framework
	Implementierung des Validation Framework
	Validation-Plugins

	Implementierung der Constraints
	Implementierungs-Strategien
	Diskursmodell-Constraints
	Transformationsregelmodell-Constraints
	Structural UI Constraints

	Evaluierung der Modellprüfung
	Evaluierung bereits gerenderter Modelle
	Evaluierung des Bike Rental Kommunikationsmodells
	Ergebnisse der Evaluierung
	Interpretation der Ergebnisse

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Constraints
	Diskursmodell-Online Shop
	Wissenschaftliche Literatur

