
DIPLOMARBEIT

Integritätsprüfung von Diskursmodellen,
Transformationsregeln und strukturellen Modellen von

graphischen User Interfaces

ausgeführt zur Erlangung des akademischen Grades

eines Diplom-Ingenieurs unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl

Proj.Ass. Dipl.-Ing. Dr.techn. Jürgen Falb

Proj.Ass. Dipl.-Ing. David Raneburger

am

Institut für Computertechnik (E384)
der Technischen Universität Wien

durch

Alexander Schörkhuber

Matr.Nr. 0025376

Mühlbachstrasse 21, 4451 Garsten

Wien, am 3.11.2010

Kurzfassung

User Interfaces können mit Hilfe von Tools auch automatisch oder semi-automatisch generiert
werden. Ein derartiges Tool ist das Uni�ed Communication Plattform (UCP)-Framework, wel-
ches es ermöglicht aus Diskursmodellen User Interfaces zu generieren. Im Zuge dieser Diplom-
arbeit wurden Eigenschaften untersucht und Modellintegritätsbedingungen de�niert, welchen die
Diskursmodelle sowie weitere Modelle im Rahmen der Generierung (Structural UI -Modelle und
Regelmodelle) genügen müssen, damit aus diesen mit dem UCP-Framework User Interfaces ge-
neriert werden können. Unter Verwendung des sog. Validation Frameworks des Eclipse Modeling

Frameworks (EMF), welches eine einfache Einbindung von Modellprüfungen ermöglicht, wurden
entsprechende Modellprüfungs-Plugins realisiert. In diesen wurden die Modellintegritätsbedingun-
gen in Form von Constraints implementiert. Zur Formulierung dieser Constraints wurde Java und
die Object Constraint Language (OCL) verwendet. OCL ist eine Erweiterung der Uni�ed Modelling

Language (UML), welche eine eigens für den Zweck der Formulierung von Gültigkeitsbedingun-
gen gescha�ene Sprache darstellt. Diese Überprüfungen sollen dazu führen, dass (in diesem Sinn)
korrekte Modelle rascher erstellt werden können und damit ein schnelleres Erstellen eines User
Interfaces mit diesem Ansatz möglich wird.

Abstract

User interfaces can be generated by tools in an automated or semi-automated way. One of the-
se tools is the Uni�ed Communication Platform (UCP)-Framework, which allows user interface
generation based on discourse-models. This thesis evaluates properties of UCP-models and de-
�nes model integrity criteria. These must be met by discourse-models and other models used
for generating user interfaces (structural UI-models and rule-models), to serve as a basis for the
UCP-Framework for user interface generation. Model check plugins were created using the so-
called Validation Framework of the Eclipse Modeling Framework (EMF), which allows an easy
inclusion of model checks. These plugins contain model integrity criteria implemented in the form
of constraints. These constraints were written in Java and the Object Constraint Language (OCL).
OCL is an addition to the Uni�ed Modeling Language (UML) and was created for the de�nition of
integrity criteria. These checks should allow � in this context � a faster creation of correct models,
and subsequently a faster generation of user interfaces.

II

Danksagung

Ich möchte allen danken, die mich bei dieser Diplomarbeit unterstützt haben.

Allen voran meinen Eltern für ihre Engelsgeduld, ihre Liebe und ihre �nanzielle Unterstützung.

Des Weiteren möchte ich all meinen Freunden für ihren unerschütterlichen Glauben an mich dan-
ken und für das Erfüllen der Bitte, um einen Tritt in den Allerwertesten, falls ich mit meiner
Leistung unzufrieden war. An meine Karatekas wurde diese Bitte ob der Gefahr einer allzu wört-
lichen Auslegung nicht gerichtet, doch auch sie standen mir mit Motivation zur Seite.

Ich möchte mich bei meinen Betreuern und dem gesamten UCP-Projektteam bedanken für die
Hilfe und prompte Betreuung, die sie mir angedeihen lieÿen. Allen voran David, der zu jeder Tages
und Nachtzeit ein o�enes Ohr und eine Lösung für all meine Probleme hatte.

Terry Pratchett und Gunkl, die mich lehrten den Spaÿ in der Wissenschaft zu sehen, welcher die
Basis bildet, sich ein Leben lang mit Freude weiterzubilden.
Professor Fasching, Lissmann und Nitzsche, deren Ideen meine Sicht auf die Welt umkrempelten
und auf eine neue Basis stellten.
Shihan Funakoshi der als oberstes Ziel die Perfektion des Charakters de�nierte.

III

Inhaltsverzeichnis

1 Einleitung 1

2 Basis der Arbeit 3

2.1 Diskursmodellierung . 3
2.2 UCP-Framework . 3

2.2.1 Kommunikationsmodell . 4
2.2.2 GUI-Generierung . 11
2.2.3 Beispiel - Shop . 15

2.3 Modellintegritätskriteriumsprüfung . 18
2.3.1 ECore . 20
2.3.2 OCL . 22
2.3.3 Java Constraints . 23
2.3.4 Validation Framework . 24

3 Realisierung von Modellintegritätsprüfungen für das UCP-Framework 27

3.1 Konzepte und Strategien . 27
3.2 Validation Framework . 28

3.2.1 Implementierung des Validation Framework 28
3.2.2 Validation-Plugins . 29

3.3 Implementierung der Constraints . 32
3.3.1 Implementierungs-Strategien . 32
3.3.2 Diskursmodell-Constraints . 33
3.3.3 Transformationsregelmodell-Constraints . 43
3.3.4 Structural UI Constraints . 45

3.4 Evaluierung der Modellprüfung . 49
3.4.1 Evaluierung bereits gerenderter Modelle . 50
3.4.2 Evaluierung des Bike Rental Kommunikationsmodells 52
3.4.3 Ergebnisse der Evaluierung . 53
3.4.4 Interpretation der Ergebnisse . 54

4 Zusammenfassung und Ausblick 56

4.1 Zusammenfassung . 56
4.2 Ausblick . 57

A Constraints 58

IV

B Diskursmodell-Online Shop 64

Wissenschaftliche Literatur 69

V

Abkürzungen

AST Abstract Syntax Tree
EMF Eclipse Modeling Framework
GUI Graphical User Interface
OCL Object Constraint Language
RST Rhetorical Structure Theorie
SQL Structured Query Language
SWT Standard Widget Toolkit
UI User Interface
UML Uni�ed Modeling Language
UCP Uni�ed Communication Platform
XMI XML Metadata Interchange
XML Extensible Markup Language

VI

1 Einleitung

Motivation

Die automatische Generierung von User Interfaces (UI) unterstützt deren rasches Erstellen und
erlaubt dem Benutzer eigene User Interfaces zu entwickeln, ohne sich zuvor langjährige Program-
miererfahrung angeeignet zu haben. Dafür gibt es zahlreiche Ansätze. Einer von diesen ist das
Uni�ed Communication Platform (UCP)-Framework, welches einen modellbasierten Ansatz zur
semiautomatischen User Interface-Generierung darstellt. Ausgangspunkt ist hierbei ein Kommu-
nikationsmodell, welches durch Transformationsregeln in ein Structural UI -Modell transformiert
wird, aus welchem dann der Quellcode für User Interfaces generiert werden kann. Das UCP-

Framework hat sich in den letzten Jahren von einer ersten Idee zu einem funktionierenden Tool
entwickelt.

Wiewohl es funktioniert, ist es allerdings derzeit schwer zu handhaben, da in den Editoren weit
mehr modelliert werden kann als erlaubt ist. Ungültige Modelle führen zu Programmabstürzen
oder einer fehlerhaften Darstellung im User Interface. Modellfehler werden derzeit als Laufzeit-
fehler mit langen und unübersichtlichen Java Fehlermeldungen zurückgemeldet, wodurch eine Mo-
dellierung zu einer langwierigen und schwierigen Aufgabe wird, welche erhebliche Kenntnis über
Java, Eclipse Modeling Framework (EMF) und das UCP-Framework erfordert.

Durch eine De�nition von Modellintegritätskriterien und die Überprüfung der Modelle anhand die-
ser, soll der Benutzer von der derzeit notwendigen Kenntnis über den inneren Aufbau und Funktion
des UCP-Frameworks befreit werden, sodass sich dieser auf die Modellierung konzentrieren kann.
Durch das Au�nden von Fehlern, gute Fehlermeldungen und Markierung der fehlerhaften Objekte
soll eine raschere Modellierung und damit ein schnelleres Erstellen eines User Interfaces möglich
werden.

Ziel

Ziel der Arbeit war die Entwicklung und Implementierung von Modellintegritätskriterien, d.h. die
De�nition von Gültigkeitsbereichen für Objekteigenschaften und gültigen Objekt-Beziehungen für
die Diskursmodelle, Transformationsregeln und Structural UI-Modelle des UCP-Frameworks.

Es sollen so viele Fehler wie möglich abgefangen werden, die schwerwiegendsten und häu�gsten
Fehler erkannt und durch gute Fehlermeldungen eine rasche Behebung ermöglicht werden.

Hierbei kann und soll nicht 100%-ige Fehlererkennung erreicht werden. Möglich ist allerdings eine
Reihe von Fehlerklassen zu erkennen und damit die Zahl der möglichen Fehlerquellen für unent-
deckte Fehler signi�kant einzuschränken. Dadurch wird auch eine raschere Fehleridenti�kation und
Behandlung von unentdeckten Fehlern möglich.

1

Einleitung

Zur Unterstützung der Implementierung gibt es im EMF ein Validation Framework, durch dessen
Verwendung der Fokus auf die Entwicklung von geeigneten Constraints gelegt werden konnte.

Aufbau der Arbeit

Nach diesem einleitenden Kapitel 1, in welchem das Ziel der Arbeit, die Motivation und der Auf-
bau kurz dargelegt werden, folgt in Kapitel 2 eine Einführung in die Diskursmodellierung. Dabei
wird zuerst das UCP-Framework dargelegt und an einem kurzen Beispiel dessen Funktionsweise
erläutert. Dann werden die Möglichkeiten erörtert, wie eine Fehlerüberprüfung auf den Modellen
realisiert werden kann, und welche Möglichkeiten das EMF dazu bietet. Auf diesem Wissen auf-
bauend wird dann in Kapitel 3 beschrieben, wie die konkrete Realisierung vorgenommen wurde.
Ausgehend von den verwendeten Konzepten und Strategien wird dann die Implementierung der
Validation Plugins beschrieben. Hierbei wird vor allem erläutert, warum die in diesen Plugins

enthaltenen Constraints entwickelt wurden und welche Fehlerklassen diese abdecken. Abschlie-
ÿend wird erklärt, wie diese evaluiert wurden und die Ergebnisse der Evaluierung präsentiert. In
Kapitel 4 werden die erreichten Ergebnisse zusammengefasst und Ansatzpunkte für eine weitere
Entwicklung dargelegt. Der Anhang enthält schlussendlich die implementierten Constraints.

Um dies alles übersichtlich zu erörtern, werden die folgenden Schriftarten für die angegebenen
Elemente verwendet:

� Fremdwörter sind kursiv gestellt.

� Quellcode ist in Typewriter ausgeführt.

� Kapitälchen markieren Klassen.

� Constraints sind fett dargestellt.

2

2 Basis der Arbeit

Den Beginn bilden die Theorien der Modellierung von Kommunikation, welche die Grundlage
für das Uni�ed Communication Plattform (UCP)-Framework bilden. Darauf folgt ein Überblick
über die Funktionsweise des Frameworks, welche anschlieÿend an einem Beispiel verdeutlicht
wird. Abschlieÿend folgt eine Beschreibung von Modellintegritätskriteriumsprüfungen im Allge-
meinen und es werden die Randbedingungen betrachtet, wie diese mit Hilfe des Eclipse Modelling

Framework(EMF)-Validation Framework im UCP-Framework eingesetzt werden können.

2.1 Diskursmodellierung

Im Diskursmodell werden alle möglichen Kommunikationsabläufe modelliert und es bildet die
Basis für eine semiautomatische Generierung eines User Interfaces durch das UCP-Framework.

Den Kern der Diskursmodellierung bilden Communicative Acts, welche auf der Speech Act Theo-

rie basieren [Sea69]. Diese stellen die Basiselemente der Kommunikationsmodellierung dar und
modellieren einzelne Kommunikationselemente, wie z.B. Fragen oder Aussagen. Zusammengehö-
rige Communicative Acts werden über Adjacency Pairs aus der Conversation Analysis verknüpft
[LFG90], z.B. zu einem Frage-Antwort Paar. Über Relationen aus der Rhetorical Structure Theo-
rie (RST) und prozedurale Relationen werden diese schlieÿlich zu einem Baum aller möglichen
Kommunikationsabläufe verbunden [MT88]. Hierbei werden prozedurale Relationen dazu benutzt,
den Kommunikationsablauf zu steuern, und RST-Relationen verbinden zusammengehörige Dialo-
gelemente.

Eine detailliert Beschreibung, wie diese Elemente dazu benutzt werden, um Kommunikationsab-
läufe zu modellieren, �ndet sich in [BFK+08].

2.2 UCP-Framework

Das UCP-Framework bietet die Möglichkeit, ein Modell der Kommunikation in einem graphischen
Editor zu erstellen und dieses anschlieÿend in ein Structural User Interface (Structural UI)-Modell
zu transformieren, aus welchem dann konkrete User Interfaces generiert werden können.

3

Basis der Arbeit

2.2.1 Kommunikationsmodell

Das Kommunikationsmodell besteht aus drei Modellen: Diskursmodell, Domain of Discourse-
Modell und Action-Modell. Diese beinhalten die Elemente, welche für die Beschreibung aller mög-
lichen Kommunikationsabläufe des Modells im UCP-Framework benötigt werden.

Das Diskursmodell beinhaltet die Information, welche Communicative Acts ausgeführt werden
und wie diese über Relationen, prozedurale Relationen und Adjacency Pairs zu Dialogen verknüpft
werden. Im Domain of Discourse-Modell wird der Teil der Domäne, welche für die Kommunikation
bzw. das User Interface notwendig sind, modelliert. Das Action-Modell modelliert die Aktionen,
welche in der Interaktion möglich sind.

Die Struktur dieser Modelle d.h. die in ihnen enthaltenen Objekte und deren Eigenschaften werden
in einem Metamodell beschrieben. Diese übergeordnete Beschreibung eines Modells legt auch die
Gültigkeit der Modellelemente fest.

2.2.1.1 Diskursmodell

Das Diskursmodell beschreibt alle möglichen Kommunikationsabläufe.

Dazu muss de�niert werden, welcher Aktor welche Entscheidung tri�t und welche Aktionen wann
ausgeführt werden.

In Bild 2.1 ist das Diskurs-Metamodell zu sehen, welches die Rahmenbedingungen dargestellt,
wie ein Diskursmodell auszusehen hat. Ein konkretes Beispiel �ndet sich in Kapitel 2.2.3. Die
einzelnen Elemente haben folgende Bedeutung:

� Discourse dient als Ausgangspunkt, auf dem das Diskursmodell aufbaut und als Container,
in welchem alle Diskursmodellelemente enthalten sind.

� RSTRelation dient zur Verknüpfung von Dialogelementen. Von dieser Klasse werden als
zahlreiche Spezialisierungen die Relationen abgeleitet.

� ProceduralRelation dient zur Steuerung des Kommunikationsablaufs.

� Link modelliert die Verbindung von RST-Relationen, prozeduralen Relationen und Adja-

cency Pairs.

� SenderAgent modelliert einen Aktor, welchem Communicative Acts bzw. Relationen oder
prozedurale Relationen zugeordnet werden. Im Fall eines Communicative Act wird dadurch
de�niert, welcher Kommunikationsteilnehmer diesen ausführt. Durch die Zuordnung von
prozeduralen Relationen wird de�niert, welcher Kommunikationsteilnehmer die eventuell
notwendigen Entscheidungen zu tre�en hat.

� CommunicativeAct ist ein in der Kommunikation vorkommendes Dialogelement.

� AdjacencyPairs verknüpfen Communicative Acts. Ein Communicative Act kann hierbei
vom Typ Opening oder Closing sein.

� Content eines Communicative Acts beschreibt, welche Domain of Discourse-Objekte über-
geben und welche Aktionen benutzt werden. Dies de�niert, was damit in der Applikations-
logik passieren soll und stellt die Schnittstelle zu dieser dar.

4

Basis der Arbeit

Abbildung 2.1: Diskurs-Metamodell

Discourse
Die Klasse Discourse stellt einen Container dar, welcher ein Diskursmodell enthält. Sie wird auf
mehrere Arten verwendet, welche streng unterschieden werden müssen. Jeder Diskurs kann beliebig
viele subDiscourses haben und in Adjacency Pairs können insertedSequences enthalten sein,
welche wiederum einen kompletten Diskurs modellieren. Im Hauptdiskurs müssen die Action-
Modelle und Domain of Discourse-Modelle festgelegt sein, des Weiteren werden hier die beiden
Aktoren vom Typ SenderAgent festgelegt.

Jeder Diskurs benötigt genau einen Root-Node, von welchem der Ablauf der Kommunikation star-
tet. Dieser ist daran erkennbar, dass er keinen Parent besitzt. Die Topologie aller Elemente eines
Diskurses muss ein Baum sein, welcher von einem Root-Node ausgeht. Dies ist bei Adjacency
Pairs und Communicative Act implizit gegeben, da Adjacency Pairs und Communicative Acts

keine Relationen, prozedurale Relationen oder Adjacency Pairs als Nachfolger haben können und

5

Basis der Arbeit

in Adjacency Pairs immer ein oder mehrere Opening oder Closing Communicative Acts eingetra-
gen werden.

Prozedurale Relationen
Prozedurale Relationen enthalten die Bedingungen, welche den Ablauf der Kommunikation fest-
legen. Durch diese lassen sich auch komplexe und iterative Kommunikationsabläufe modellieren.
Zu ihren Nachfolgern besitzen sie Links, welche die Bedingungen enthalten, wann diese Zwei-
ge ausgeführt werden. Jede Relation hat eine bestimmte semantische Bedeutung und benötigt
eine bestimmte Anzahl und bestimmte Typen von Links. Alle Spezialisierungen der abstrakten
Klasse ProceduralRelation, welche konkret in einem Diskurs vorkommen können, werden im
Folgenden näher erläutert und sind in Abbildung 2.2 auf der linken Seite dargestellt.

� Sequence

Ziel: Dient dazu, Kommunikationselemente in einer festgelegten Reihenfolge auszuführen.
Funktion: Die angehängten Nuclei-Links werden der Reihe nach ausgeführt.
Zu beachten: Die Relation darf nur Links vom Typ Nucleus besitzen, welche in deren
Eigenschaft condition eindeutig nummeriert sind. Es müssen zwei oder mehr davon vor-
handen sein.

� IfUntil

Ziel: Dient einerseits dazu Abfragen zu realisieren, oder andererseits einen Kommunikati-
onszweig so lange zu wiederholen, bis eine Abbruchbedingung erfüllt ist.
Funktion: Realisiert eine Wenn-Dann Abfrage mit einer bedingten Schleife. Der Tree-Link
wird ausgeführt, bis die condition des Then-Links erfüllt ist. Optional kann auch ein Else-

Link vorhanden sein, welcher ausgeführt wird, falls die condition nicht zutri�t.
Zu beachten: Durch das Vorhanden sein von Then und Else wird ein Verlassen der Schleife
in jedem Fall erzwungen. Dies führt dazu, dass zumindest ein Tree und ein Then vorhanden
sein müssen, und im Then eine condition angegeben ist, wann dieser ausgeführt werden soll.
Dadurch besteht auch die Möglichkeit Endlosschleifen zu realisieren, indem die condition

des Then-Links leer bleibt. Dies kann prinzipiell ein erwünschter E�ekt sein, aber auch durch
einen vergessenen Eintrag einer Abbruchbedingung oder das Löschen des die Abbruchbedin-
gung beinhaltenden Links zustande kommen.

� Condition

Ziel: Stellt eine Entscheidung zwischen zwei Zweigen anhand einer Bedingung dar.
Funktion: Anhand einer Bedingung wird der Zweig, in dem der Kommunikationsprozess
fortgeführt wird, ausgewählt.
Zu beachten: Dazu wird ein Then-Link und ein Else-Link benötigt, wobei im Then-Link

die condition eingetragen wird, wann dieser Zweig ausgeführt wird. Ist diese nicht erfüllt,
wird der Else-Link ausgeführt.

RST-Relationen
Jede Relation hat eine bestimmte Aufgabe und benötigt eine bestimmte Anzahl und bestimmte
Typen der ihr zugehörigen Links. Alle Spezialisierungen der abstrakten Klasse RSTRelation,
welche konkret in einem Diskurs vorkommen können, werden im Folgenden näher erläutert und
sind in Abbildung 2.2 auf der rechten Seite dargestellt.

� Result

Ziel: Aus dem Abschluss eines seiner Zweige resultiert die Ausführung des anderen Zweiges.

6

Basis der Arbeit

Abbildung 2.2: RST-Relationen und prozedurale Relationen

Funktion: Nach der erfolgreichen Ausführung des Satellite-Zweiges, wird der Nucleus-Zweig
ausgeführt.
Zu beachten: Die Ausführung des Nucleus-Zweiges wird durch ein externes Ereignis aus-
gelöst.

� Elaboration

Ziel: Zusätzliche Information zu einem Nucleus-Zweig zu liefern.
Funktion: Im Satellite-Zweig werden zusätzliche Informationen über den Nucleus-Zweig
geliefert. Die zugehörigen Communicative Acts können auch Questions sein, über welche die
zusätzliche Information, welche angezeigt werden soll, spezi�ziert und ausgewählt wird.
Zu beachten: Es ist dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

� Background

Ziel: Zusätzliche Hintergrundinformation zu dem Nucleus-Zweig zu liefern.
Funktion: Hier bietet wie in der Elaboration der Satellite-Zweig zusätzliche Information
zum Nucleus-Zweig, wobei hier im Unterschied zu einer Elaboration die Communicative
Acts nur vom Typ Informing sein sollten.
Zu beachten: Es sind dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

� Title

Ziel: Title gibt einem Modellelement eine Überschrift.
Funktion: Eine Spezialisierung der Elaboration, wobei hier sowohl Nucleus als auch
Satellite vom Typ Informing sein sollten. Diese Relation kann z.B. dazu benutzt werden,
um einem Infotext eine Überschrift zu geben, oder Bildern eine kurze Beschreibung zur Seite
zu stellen.
Zu beachten: Es ist dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

� Annotation

Ziel: Metadaten zur Verfügung stellen.

7

Basis der Arbeit

Funktion: Eine weitere Spezialisierung der Elaboration, welche dazu benutzt wird, um
im Satellite-Zweig Metadaten zum Nucleus anzuzeigen.
Zu beachten: Es ist dazu ein Nucleus- und ein Satellite-Zweig erforderlich.

� Joint

Ziel: Verbindet mehrere gleichwertige Kommunikationsabläufe.
Funktion: Im Fall der Relation Joint müssen alle Nuclei-Zweige abgeschlossen sein, damit
die Relationen beendet ist und im Kommunikationsablauf weitergegangen wird.
Zu beachten: Es werden zwei oder mehr Nuclei -Zweige benötigt.

� Alternative

Ziel: Gleichwertige Entscheidungsmöglichkeiten anbieten.
Funktion: Die Entscheidung wird so realisiert, dass die Relation beendet ist, sobald einer
ihrer Zweige abgeschlossen ist.
Zu beachten: Es werden zwei oder mehr Nuclei-Zweige benötigt.

� Contrast

Ziel: Zwei gegensätzliche Entscheidungsmöglichkeiten anbieten.
Funktion: Hier hat jeder Nucleus eine condition, wobei sich diese gegenseitig ausschlieÿen
müssen. In der condition können auch Domain of Discourse-Modellobjekte mit logischen
Ausdrücken evaluiert werden. Dadurch kann der Kommunikations�uss ähnlich wie durch
IfUntil gesteuert werden.
Zu beachten: Es werden zwei oder mehr Nuclei-Zweige benötigt, von denen jeder eine
condition besitzen muss, welche die anderen ausschlieÿt.

An dieser Stelle könnte man sich fragen, warum genau diese Anzahl an Relationen realisiert wurde,
wo einerseits alles auch mit weniger Relationen modelliert werden könnte und andererseits auch
zahlreiche weitere Relationen denkbar wären. All diese Relationen werden bei der Transformation
in ein Structural UI -Modell entsprechend den Regeln umgewandelt und diese Regeln beinhalten
Darstellungsmuster für jede Relation. Vor allem ist es auch möglich, für jede Relation mehrere
Regeln zu erstellen, wodurch zum Einen eine einheitliche Darstellung erreicht werden kann, wel-
che zum Anderen auch von anderen Parametern abhängen kann, wie z.B. das Vorhandensein von
speziellen Modellelementen. Des Weiteren entspricht die Verwendung mehrerer verschiedener Re-
lationen eher dem natürlichen Sprachgebrauch, wodurch die Verständlichkeit und Lesbarkeit der
Diskursmodelle verbessert wird.

Links
Wie aus dem Diskursmetamodell, siehe Abbildung 2.1, ersichtlich ist verknüpfen Links Relatio-
nen untereinander oder eine Relation mit einem Adjacency Pair. Sie können vom Typ Nucleus,

Satellite, Tree, Then oder Else sein. Jede Relation benötigt eine bestimmte Anzahl dieser Linkty-
pen. Je nach Funktion können diese Bedingungen besitzen, in welchem Fall der an ihnen hängende
Zweig ausgeführt wird.

Agents
Agents modellieren die Kommunikationsteilnehmer und führen als solche Communicative Acts

aus. Dazu muss jedem Communicative Act ein Agent zugewiesen werden. Des Weiteren muss
für einige Relationen ein Agent de�niert sein, der die Entscheidung tri�t, in welchem Zweig der
Kommunikationsprozess fortgesetzt wird.

Communicative Acts
Communicative Acts stellen die Dialogbasiselemente, z.B. Fragen oder Antworten, dar. Die in den

8

Basis der Arbeit

Modellen vorkommenden Spezialisierungen der Klasse CommunicativeAct sind in Abbildung
2.3 dargestellt.

Adjacency Pairs
Adjacency Pairs verknüpfen einzelne Dialogbasiselemente z.B. in der Form Frage-Antwort, welche
durch die zugehörigen Communicative Acts verkörpert werden. Jedes Adjacency Pair hat einen
Opening Communicative Act, und einen oder mehrere Closing Communicative Acts.

Abbildung 2.3: Communicative Act Taxonomie

Die einzelnen Communicative Acts können nicht beliebig kombiniert werden, sondern es sind
nur spezielle Kombinationen erlaubt und sinnvoll. Opening bzw. Closing können nur bestimmte
Communicative Acts sein. Die erlaubten Opening Communicative Act-Closing Communicative Act
Paare sind in Tabelle 2.1 dargestellt. Eine Ausnahme stellt hier der Communicative Act Informing
dar. Dieser dient der Darstellung von Information und muss keinen Closing Communicative Act

besitzen.

Im Allgemeinen wird ein Adjacency Pair durch das Ausführen eines seiner Closing Communica-

tive Acts geschlossen und eine Relation wird dadurch abgeschlossen, dass je nach Relation eine
bestimmte Anzahl seiner Child -Zweige abgeschlossen werden. In Falle des Communicative Act

Informing wird das zugehörige Adjacency Pair mit der Erfüllung der Relation, an welcher das
Adjacency Pair -Communicative Act Konstrukt hängt, geschlossen.

Content
Ein Communicative Act kann einen Content haben, in welchem beschrieben wird, mit welcher
Funktion der Applikationslogik dieser Communicative Act assoziiert wird und wie die Daten zur
Laufzeit verarbeitet werden. Dies geschieht in einer der Structured Query Language(SQL) ähn-
lichen Sprache, wobei bei deren Entwicklung versucht wurde, diese so weit wie möglich an den
natürlichen Sprachgebrauch anzupassen. Im Content können Action-Modell und Domain of Dis-

course-Modell Objekte enthalten sein.

9

Basis der Arbeit

Tabelle 2.1: Beziehungen zwischen Communicative Acts [BEF+10]

Ob ein Content nach dessen Eingabe vom Editor geparst werden konnte, sieht man an Hand der
contentASTspecification, in welcher alle Action- und Domain of Discourse-Elemente in aufge-
löster Form, d.h. mit deren komplettem Pfad zu dem Objekt im zugehörigen Modell, enthalten
sind. Dies ist im Allgemeinen dann der Fall, wenn diese in den im Diskurs de�nierten Action- und
Domain of Discourse-Modellen enthalten sind. Einige Communicative Acts fordern, dass in ihrem
Content bestimmte Actions oder Spezialisierungen davon enthalten sind, welche im Folgenden
aufgelistet sind.

� Eine ClosedQuestion muss select und for enthalten.

� Ein Informing muss presenting enthalten.

� Eine OpenQuestion muss get oder update und for enthalten.

� Ein Request benötigt eine Action im Content.

2.2.1.2 Action-Modell

Das Action-Modell bildet die Schnittstelle zur Applikationslogik.

Im UCP-Framework ist ein Basisset von Actions und Noti�cations im Action-Modell basic de-
�niert. Diese werden dazu verwendet, den Content von Communicative Acts zu de�nieren. Das
Modell basic und alle verwendeten Action-Modelle müssen dazu im Hauptdiskurs de�niert wer-
den.

Für eine konkrete Implementierung eines Diskurses ist es möglich bzw. notwendig, dieses Basisset
um die benötigte Funktionalität zu erweitern. Dies kann einerseits durch die Einführung neuer
Actions und Noti�cations oder andererseits durch Spezialisierung bestehender geschehen.

Actions und Noti�cations stellen die Schnittstelle zur Applikationslogik dar. In der �nalen Co-
degenerierung werden sie in Dummyfunktionen umgewandelt, welche dann vom Programmierer
mit der Interfacelogik befüllt werden, durch welche die Kommunikation mit der Applikationslogik

10

Basis der Arbeit

besorgt wird. Durch die Spezi�kation der parameter, attributes und representations kann
die Schnittstelle näher de�niert und den Erfordernissen des Kommunikationsablaufs angepasst
werden.

2.2.1.3 Domain of Discourse-Modell

Im Domain of Discourse-Modell wird der Teil der Applikationsdomäne modelliert, welcher für die
Kommunikation relevant ist.

Dieses Modell kann als Uni�ed Modeling Language (UML)- oder ECore-Diagramm erstellt und
visualisiert werden, wofür graphischen Editoren zur Verfügung stehen. Es wird als XML Metadata

Interchange (XMI)-Datei gespeichert und bietet die Objektbeziehungen bei der UI-Generierung.
Die konkreten Instanzen werden diesem Modell entsprechend in einer eigenen XMI-Datei abgelegt.

2.2.2 GUI-Generierung

Durch das UCP-Framework kann aus einem Kommunikationsmodell der Code für User Interfaces
generiert werden.

Das Rendern eines Kommunikationsmodells zu einem Graphical User Interface (GUI) ist ein zwei-
stu�ger Prozess. Zuerst wird aus den Kommunikationsmodellen ein Stuctural UI generiert, welches
die Struktur des User Interfaces auf Basis von abstrakten Widgets beschreibt. Dieses Structural
UI ist unabhängig von dem verwendeten Ausgabe-Toolkit, welches schlieÿlich benutzt wird, um
das User Interface darzustellen. Allerdings ist es sehr wohl abhängig vom Zielgerät, auf welchem
das User Interface dargestellt werden soll. Informationen über dieses, wie z.B. Bildschirmau�ö-
sung, werden entweder direkt in das Structural UI -Modell eingegeben oder dem Code-Generator
als CSS-Datei übergeben. [KRR+10]

Diese zweistu�ge Variante hat zum einen den Vorteil, dass das generierte Structural UI platfor-
munabhängig ist und im zweiten Schritt durch beliebige GUI-Toolkit Sprachen dargestellt werden
kann. Zum Anderen kann das Design direkt beein�usst und an das Zielgerät angepasst werden.
Abbildung 2.4 zeigt die Renderingarchitektur, wobei die Modelle hervorgehoben sind an denen
eine Überprüfung notwendig bzw. sinnvoll und möglich ist.

Ein Discourse To Structural UI Transformer führt eine Modell-zu-Modell Transformation durch,
welche auf Regeln basiert. Diese Regeln beschreiben, wie aus Mustern von Diskursmodellelementen
ein Structural UI generiert und transformiert wird. Solch eine Regel kann zum Beispiel besagen,
dass jeder Informing-Communicative Act, welcher sich im Diskursmodell be�ndet, in das Struc-
tural UI zu einem Panel mit einem Label -Widget transformiert wird. Dieses Label beinhaltet im
Weiteren die Information, welche im entsprechenden Diskursobjekt referenziert ist.

Den Input für diesen Transformator bilden die folgenden Modelle:

� Kommunikationsmodell, bestehend aus

� Diskursmodell

� Action-Modell

� Domain of Discourse-Modell

11

Basis der Arbeit

Abbildung 2.4: Der UCP-Transformationsprozess

� Regelmodell

� Einschränkungen durch die Spezi�zierung der Zielplattform

Die Generierung eines UI aus dem Structural UI erfolgt dann aus:

� Structural UI -Modell

� Formatierungsinformationen, z.B. CSS

Im Action-Modell sind keine Parameter zwingend erforderlich bzw. sind diese bereits durch das
ECore-Modell de�niert. Das Domain of Discourse-Modell modelliert jenen Teil der Applikations-
domäne, welcher für die Kommunikation relevant ist. Im Domain of Discourse-Modell können
korrekte Objektbeziehungen nicht im Allgemeinen de�niert werden. Die korrekte Erstellung und
Verwendung der Action- und Domain of Discourse-Modellobjekte kann erst überprüft werden,
wenn diese im Diskursmodell verwendet werden. Erst durch deren Verwendung in den Content-
Spezi�kationen wird im Kontext des Diskursmodelles eine Aussage über deren Korrektheit mög-
lich. Bei der Evaluierung der Content-Objekte kann allerdings nicht a priori festgestellt werden,
ob ein Action- oder Domain of Discourse-Modellelement korrekt erstellt und verwendet wurde. Es
kann nur eine Aussage darüber getro�en werden, ob die in der contentSpezification beschriebe-
ne Verwendung der Modellelemente möglich ist. Falls bei der Überprüfung von Content-Objekten
ein Fehler auftritt muss der Benutzer entscheiden, ob das Modellobjekt fehlerhaft ist oder es im
Content falsch verwendet wurde.

Einschränkungen durch die Zielplattform und Formatierungsinformationen wären auf Plausibilität
überprüfbar. Vor der groÿen Vielfalt an möglichen Zielplattformen wären dies allerdings sehr
schwache Einschränkungen. Einzig ein Abfangen von Fehlern, welche durch leere Eigenschaftsfelder
hervorgerufen werden könnten, wäre möglich. Dies ist allerdings obsolet da derartiges vom Code
Generator abgefangen wird.

Damit bleiben Modellintegritätsprüfungen an Diskursmodellen, den Regelmodellen und den Struc-
tural UI-Modellen durchzuführen.

12

Basis der Arbeit

2.2.2.1 Structural UI-Modell

Das Structural UI -Modell ist ein Zwischenschritt zwischen dem Diskursmodell und dem generier-
ten Code eines User Interfaces.

In Abbildung 2.5 ist ein Ausschnitt aus dem zugehörigen Metamodell abgebildet, welcher die für
die Struktur und das Verhalten relevanten Elemente zeigt. Es ist ein auf Widgets basierender
Baum, welcher die User Interface-Struktur repräsentiert. Basierend auf der abstrakten Klasse
Widget werden alle im Structural UI- Modell vorkommenden Elemente von dieser abgeleitet.
Diese Elemente sind entweder InputWidgets, welche zum Sammeln von Information benutzt
werden, OutputWidgets, welche zur Präsentation von Informationen dienen, oder Panels,
welche weitere Widgets beinhalten können und zur Strukturierung des User Interfaces benö-
tigt werden. Einen Sonderfall stellt die Klasse ListWidget dar, welches sowohl von der Klasse
InputWidget als auch von der Klasse Panel abgeleitet ist.

Jedes dieser Widgets kann Layoutinformationen beinhalten, welche spezi�zieren, wie es dargestellt
werden soll. Im Fall der Input Widgets ist auch angegeben, welche Events durch deren Betätigung
ausgelöst werden.

Abbildung 2.5: Structural UI-Metamodell

Diese abstrakten Widgets sind nicht zu verwechseln mit den gleichnamigen Java Widgets, wie sie
z.B. im Standard Widget Toolkit (SWT) verwendet werden.

13

Basis der Arbeit

2.2.2.2 Transformationsregeln

Transformationsregeln werden für die Modell-zu-Modell Transformation von Diskursmodellen zu
Structural UI -Modellen verwendet. Sie beschreiben, welche Objektbeziehungen eines Diskursmo-
dells auf welche Art und Weise im Structural UI -Modell dargestellt werden.

Dieser Transformationsprozess besteht aus zwei Schritten, wie in [KFK09, Kapitel 3] näher be-
schrieben ist.

1. Im ersten Schritt werden Transformationsregeln auf Diskursmodellelemente angewandt. Die-
se Transformationsregeln generieren Input- und Output-Widgets bzw. Spezialisierungen von
diesen wie Buttons oder Labels. Diese dienen als Platzhalter für Content-Objekte.

2. Im zweiten Schritt werden Content Transformation Rules im Kontext der Transformations-
regeln des ersten Schrittes ausgeführt. Diese Einbettung erlaubt die Auswahl von Widgets
für das schlussendliche Structural UI -Modell basierend auf dem Content Typ, dem diesem
Content zugeordneten Communicative Act Typ und dem gegenwärtigen Kontext, in dem
der Communicative Act eingebettet ist. Dieser Kontext wird von der übergeordneten Regel
de�niert.

Am Ende dieser Transformationen dürfen im Structural UI -Modell keine Input- oder Output-
Widgets mehr vorhanden sein.

Wie aus dem Regel-Metamodell in Abbildung 2.6 ersichtlich, besteht eine Regel im Kern aus
einem Source- und einem Target-Objekt und hat im Parameter type seine Aufgabe spezi�ziert.
Sie kann je nach type verschiedenes Verhalten zeigen und neue Structural UI -Objekte kreieren,
bestehende Structural UI -Objekte modi�zieren oder löschen.

Abbildung 2.6: Transformationsregel-Metamodell

Das Diskursmodell wird rekursiv durchlaufen und eine Regel wird dann angewandt, wenn deren
Source-Objekt im Diskursmodell gefunden wird. Falls ein Diskursmuster angegeben ist, wird über-
prüft, ob dieses in dem gefundenen Objekt im Diskursmodell ebenfalls vorliegt. Wenn dies alles

14

Basis der Arbeit

zutri�t, wird das im Target angegebene Objekt kreiert, mit allen im Structural UI -Teil der Regel
spezi�zierten Strukturen.

Dieser Prozess wird dadurch erweitert, dass mehrere Transformationsregeln für jedes Diskurs-
muster vorliegen dürfen. Durch die Anwendung der sogenannten Con�ict Resolution wird die
Regel ausgewählt, welche verwendet wird. Dieser Con�ict Resolution-Mechanismus muss die Re-
geln nach bestimmten Kriterien auswählen. Diese Auswahl kann z.B. anhand des Platzes, welchen
die Widgets im generierten User Interface benötigen, geschehen. Dazu müssen alle Regeln, welche
dasselbe Diskursmuster haben, vom Designer hinsichtlich ihres Platzverbrauches bewertet werden.
[KRR+10]

Sind Mappings vorhanden, so werden Diskursmodellelemente mit Structural UI -Elementen in
Beziehung gebracht und Eigenschaften des Diskursmodellobjektes auf die Eigenschaften des Struc-
tural UI -Objekts übertragen.

Constraints stellen zusätzliche Überprüfungen dar, welche erfüllt sein müssen, damit diese Regel
angewandt wird. Sie können auch Werte enthalten, welche die Darstellung auf einer konkreten
Zielplattform spezi�zieren, wie z.B. die Bildschirmgröÿe, oder referenzieren auf eine Cascading

Style Sheet (CSS)-Datei, welche die benötigten Formatierungsinformationen enthält. Hierbei sei
nochmal darauf verwiesen, dass das Structural UI -Modell nur von der Zieltechnologie, d.h. dem
verwendeten Ausgabe-Toolkit unabhängig ist, nicht allerdings von der Zielplattform und darum
bereits alle Informationen über das Layout enthält.

Ist ein Discourse angegeben, so stellt dieses ein Diskursmuster und auch eine Einschränkung dar,
da die Regel nur angewandt wird, wenn dieses Muster im Diskursmodell gefunden wird.

2.2.3 Beispiel - Shop

Am Beispiel einer Shop-Applikation sollen diese Modelle nochmals verdeutlicht werden. Ausgehend
von einem Diskursmodell, siehe Anhang B, wird die Transformation in ein Structural UI -Modell
anhand einer Transformationsregel erläutert.

Das zu diesem Diskursmodell gehörige Domain of Discourse-Modell ist in Abbildung 2.7 darge-
stellt.

Damit ein UI dargestellt werden kann, müssen noch entsprechende Instanzen der Domain of

Discourse-Modellobjekte den Modellen beigelegt werden. Diese sind in der Datei OnlineShopPre-
viewData.xmi gespeichert. Sie dienen nur der Illustration dieses Beispiels, in einem richtigen User

Interface müssten diese von der Applikation bereitgestellt werden. Diese Shop-Applikation kommt
ohne die De�nition eines eigenen Action-Modells aus, da alle benötigten Actions im Modell basic
bereits vorhanden sind.

Der Kommunikationsablauf beginnt im Diskursmodell in dem unteren IfUntil. Dessen Tree-Zweig
wird solange ausgeführt, bis er abgeschlossen ist. An diesem hängt ein weiteres IfUntil, an dessen
Tree-Zweig ein Adjacency Pair, durch eine Raute dargestellt, hängt. Dieses Adjacency Pair be-
sitzt einen Opening Communicative Act (ClosedQuestion - AskForProductCategory) und einen
Closing Communicative Act (Answer - SelectProductCategory). Diese Closed Question reprä-
sentiert eine Liste, aus welcher eine Produktkategorie ausgewählt werden muss. Die Auswahl der
Produktkategorie wird so lange fortgesetzt, bis die Bedingung productCategory.products>0 des
Then-Zweiges erfüllt ist, d.h. bis eine Produktkategorie, in welcher Produkte vorhanden sind,
ausgewählt wird.

15

Basis der Arbeit

Abbildung 2.7: Domain of Discourse-Modell Shop

Dann führt der Kommunikationsablauf über den Then-Zweig zur Relation Background. Hier wird
zum Einen über den Communicative Act Informing die Produktkategorie angezeigt, zum Ande-
ren werden durch die ClosedQuestion - AskForProduct die Produkte der gewählten Katego-
rie angezeigt, von denen eines durch Answer - SelectProduct ausgewählt wird, welches in den
shoppingCart gegeben wird. Dadurch ist der Then-Zweig des zweiten IfUntil erfüllt und diese
prozedurale Relation ist beendet. Dann wird im ersten IfUntil überprüft, ob die Bedingung sei-
nes Then-Zweiges shoppingCart.count(products)>0 erfüllt ist, d.h. ob ein Produkt ausgewählt
wurde und somit im shoppingCart gespeichert ist. Ist dies nicht der Fall, so werden ein weite-
res Mal die Produktkategorien angezeigt und nach deren Auswahl die Produkte dieser Kategorie,
solange bis ein Produkt ausgewählt wurde.

Sobald ein Produkt ausgewählt wurde, springt der Kommunikationsablauf zur prozeduralen Re-
lation Joint. Um diese zu erfüllen, müssen die drei gleichwertigen Fragen, nach der Kreditkarten-
nummer, der Rechnungs- und Zustelladresse beantwortet werden. Hierbei handelt es sich um Open

Questions, welche eine Eingabe z.B. in ein Textfeld erfordern.

Nach Eingabe dieser Daten ist das Joint beendet, damit auch der Then-Zweig und das IfUntil. Da
das IfUntil den Root-Node darstellt, ist somit der gesamte Diskurs beendet. Dadurch wird entweder
der gesamte Kommunikationsablauf beendet, oder, falls dieser Diskurs eine inserted sequence in
einem anderen Diskursmodell darstellt, in diesem der Kommunikationsablauf weitergeführt.

Anhand der Transformationsregeln wird dieses Kommunikationsmodell in ein Structural UI -Modell
transformiert. Dieser Prozess wird anhand der Regel in Abbildung 2.8 exemplarisch gezeigt. Das
Adjacency Pair mit Question und Answer stellt hierbei das Suchmuster dar. Wird es gefunden,
so wird ein Panel mit den entsprechenden Objekten erstellt.

Dazu werden alle Diskurselemente auf der Suche nach einem Adjacency Pair durchlaufen. Wird
eines gefunden, so wird überprüft, ob an diesem dem Suchmuster entsprechend eine Closed Que-

stion und eine Answer hängt, wie in Abbildung 2.8 unter Discourse ClosedQuestion Discourse

16

Basis der Arbeit

ersichtlich. Daraufhin werden ein List Widget, der Button Select und das Panel ListPanel mit all
ihren Unterstrukturen im Structural UI -Modell kreiert.

Abbildung 2.8: Regel für eine Closed Question

Dieser Prozess wird für alle Diskursmodellelemente durchgeführt und führt zu einem Structural

UI -Modell. Durch die oben beschriebene Transformationsregel wird im Structural UI -Modell ein
Output Widget kreiert, welches in einem weiteren Zyklus von einer anderen Regel durch das Label
ersetzt wurde, wie in Abbildung 2.9 dargestellt. Dargestellt ist das gesamte Structural UI -Modell,
wobei nur der Ausschnitt, welcher von der oben genannten Regel generiert wurde, entfaltet ist,
um die Details zu zeigen.

Abbildung 2.9: Structural UI - Ergebnis aus Closed Question

17

Basis der Arbeit

Von diesem Structural UI -Modell ausgehend ist es nun möglich User Interfaces zu generieren.
Dies könnte wie in den Abbildungen 2.10, 2.11 und 2.12 aussehen. Für eine andere Plattform,
z.B. eine Applikation für ein Mobiltelefon, kann aus demselben Structural UI ein anderes User
Interface generiert werden.

Abbildung 2.10: Online Shop - Auswahl der Produktkategorie [Ran08]

Abbildung 2.11: Online Shop - Produktauswahl [Ran08]

2.3 Modellintegritätskriteriumsprüfung

Durch die Überprüfung eines Modells anhand de�nierter Gültigkeitsbedingungen können Fehler
in Modellen gefunden werden.

18

Basis der Arbeit

Abbildung 2.12: Online Shop - Eingabe der Kundendaten [Ran08]

Das Wort Validierung hat seine Wurzeln im englischen valid, was sich mit gültig oder zulässig
übersetzen lässt, auch der Begri� plausibel könnte gebraucht werden. Die Gültigkeit von Varia-
blen ist leicht ersichtlich. Zum Beispiel darf eine Variable welche das Alter eines Menschen in
Jahren beschreibt, keine negativen Werte annehmen und Werte über 120 sind wohl unrealistisch.
Schwieriger ist die De�nition von Gültigkeit in Modellen. Hier müssen die Objektbeziehungen be-
trachtet werden. Nehmen wir zum Beispiel ein Objekt Baum, welcher 0..* Frucht-Objekte besitzt.
Wenn diese Früchte vom Typ Äpfel oder Kirschen sind erscheint es plausibel, sind diese Früchte
vom Typ Hamburger liegt wahrscheinlich ein Fehler vor.

Der Begri� Validation wird in einigen Wissensgebieten unterschiedlich verwendet. Dies liegt wohl
in der allgemeinen Verwendung von valid als gültig begründet. Während im EMF valid bzw.
Validation für die Gültigkeitsprüfung der Modelle hinsichtlich deren Modellintegritätskriterien
verwendet wird, hat er im Software-Engineering eine gänzlich andere Bedeutung.

Im Software-Engineering ist der Begri� Validation eng mit dem Begri� Veri�kation verwandt.
Beide beschäftigen sich mit der Überprüfung auf Richtigkeit. Man kann sagen, Validation stellt
ein �building the right system� dar, während Veri�kation ein �building the system right� bezeichnet.
Eine dezidierte Unterscheidung gestaltet sich manchmal insofern als schwierig, als Validation und
Veri�kation versuchen die Richtigkeit sicherzustellen, wobei Überlappungen möglich sind, wodurch
oft einfach der Begri� �Valdiation und Veri�kation� benutzt wird.

So steht man hier vor dem Problem, dass die Entwicklung von Modellintegritätskriterien eine
Modellierung im Rahmen eines Software-Engineerings darstellt und im Rahmen des EMF imple-
mentiert wird. Wobei in diesen beiden Gebieten der Begri� valid bzw. Validation eine gänzlich
andere Bedeutung besitzt. Darum wird in der vorliegenden Arbeit so weit als möglich auf diese
Begri�e verzichtet und stattdessen Synonyme aus den beiden Domänen verwendet.

Als gültig wird ein Modell bezeichnet, wenn es den Integritätskriterien seines Metamodelles genügt.
Diese Integritätskriterien werden im Software-Engineering gefunden und müssen vom schlussend-
lich daraus entwickelten System erfüllt werden. In [KKHH04] ist ein Tool zur Überprüfung der
Übereinstimmung von Requirements mit deren Metamodell beschrieben.

19

Basis der Arbeit

Zur Prüfung von Modellintegritätskriterien gibt es im EMF ein Validation Framework, durch des-
sen Verwendung der Fokus auf die Entwicklung von geeigneten Constraints konzentriert werden
kann. Constraints sind Einschränkungen bzw. Bedingungen, denen Objekte genügen müssen, um
als richtig bzw. gültig angesehen zu werden. Oder anders gesehen wird richtig oder gültig durch
das Erfüllen dieser Kriterien de�niert. Zur Implementierung von Constraints gibt es drei Mög-
lichkeiten, welche von EMF unterstützt werden. Diese haben unterschiedliche Vor- und Nachteile
und unterscheiden sich in deren Mächtigkeit und in ihrem Implementierungsaufwand.

1. ECore-Modell
Beim Durchführen einer Modellprüfung im EMF wird auch überprüft, ob ein Modell den
De�nitionen seines Metamodelles genügt. Anwendung �ndet dies z.B. bei der De�nition von
Kardinalitäten oder der De�nition einer Eigenschaft als einzigartig durch das Schlüsselwort
unique.

Der Vorteil liegt darin, dass die Implementierung derartiger Constraints durch wenige Klicks
erreicht werden kann.

Der Nachteil ist, dass sich damit nur sehr wenige Objekteigenschaften überprüfen lassen
und jede Änderung Auswirkungen auf die gesamte Software haben kann, welche auf diesem
Modell basiert.

2. Object Constraint Language (OCL)
Für die Implementierung der Constraints bietet sich OCL an, welche UML um die Mög-
lichkeit erweitert Gültigkeitsbereiche von Objekteigenschaften zu überprüfen und ungültige
Objektbeziehungen zu erkennen.

Der Vorteil von OCL liegt vor allem in der Übersichtlichkeit und der geringen Länge von
OCL-Constraints. Damit lassen sich Constraints in wenigen Zeilen realisieren, wodurch diese
übersichtlich und schnell zu erstellen sind.

Ein Nachteil liegt in den kaum vorhandenen Debug-Möglichkeiten, welche Eclipse und EMF
für OCL mit sich bringen. Viel schwerer wiegt allerdings, dass OCL keine imperative Pro-
grammiersprache darstellt und keine Möglichkeit der Programm�usssteuerung bietet. Des
Weiteren ist beachtenswert, dass nur seitene�ektfreie Funktionen verwendet werden können,
da durch die Überprüfung die überprüften Objekte nicht verändert werden dürfen.

3. Java
Für die Überprüfung komplexerer Objektbeziehungen besteht die Möglichkeit, Constraints
in Java zu implementieren.

Der Vorteil hierbei ist, dass der gesamte Java-Sprachumfang mit all seinen Möglichkeiten
zur Verfügung steht.

Dies wird um den Preis erkauft, dass Java-Constraints im Allgemeinen länger sind und für
deren Erstellung mehr Zeit aufgewendet werden muss.

2.3.1 ECore

ECore-Modelle stellen die Metamodelle des EMF dar. Diese beschreiben wie die Modellelemente
auszusehen haben und welche Eigenschaften diese besitzen.

Das Eclipse Modeling Framework (EMF) ist ein Modellierungs Framework und Codegenerierungs
Tool zur Erstellung von Applikationen. Ausgehend von einer Modellspezi�kation in XMI stellt es

20

Basis der Arbeit

Werkzeuge und Laufzeitunterstützung zur Verfügung, welche benötigt werden, um ein Set von
Javaklassen für das Modell zu generieren. Es unterstützt den Entwicklungsprozess durch einen
Editor und Adapterklassen, welche das Betrachten und Bearbeiten eines Modells erlauben. [4]

Ein Domain-Modell repräsentiert die Daten, welche in einem Programm verwendet werden sollen.
Einen generellen Vorteil bietet die Modellierung der Daten unabhängig von der Applikationslogik.
Dazu bietet sich das Architekturmuster Model-View-Control (MVC) an, in welchem die Software
Entwicklung in drei Einheiten strukturiert wird: Datenmodell, Darstellung und Steuerung.

Mit EMF können derartige Domain-Modelle modelliert werden. Hierbei wird zwischen Metamo-
dell und dem eigentlichen Modell unterschieden, wobei das Metamodell die Struktur des Modells
beschreibt und das eigentliche Modell eine Instanz dieses Metamodelles ist. Diese Modellde�nition
wird in XML Metadata Interchange (XMI) implementiert und kann auf Basis von UML, XML
Schemata, oder einem XMI Dokument de�niert werden. Sobald das EMF-Metamodell spezi�ziert
ist, können daraus entsprechende Java-Klassen generiert werden. [6]

Abbildung 2.13: EMF Modell Generierung [7]

Zu jedem EMF-Modell gibt es zwei Metamodelle, das ECore-Modell und das Genmodel-Modell.

21

Basis der Arbeit

Das ECore-Modell enthält die Information über die de�nierten Klassen. Es besteht auch die Mög-
lichkeit das ECore-Modell in einem graphischen ECore-Diagrammeditor zu zeichnen und zu editie-
ren. ECore-Modell und ECore-Diagramm besitzen denselben Informationsgehalt. Im Genmodel-
Modell können zusätzliche Parameter und Informationen für die automatische Codegenerierung
spezi�ziert werden.

In Abbildung 2.13 nach [7] ist der Ablauf der EMF Modell Generierung veranschaulicht.

Ein ECore-Modell kann, wie in [6] dargelegt, aus den folgenden vier Datentypen bestehen:

� EClass: Repräsentiert eine Klasse, welche wiederum Attribute und Referenzen enthalten
kann.

� EAttribute: Repräsentiert ein Attribut, welches einen Namen und einen Typ hat.

� EReference: Repräsentiert ein Ende einer Assoziation zwischen zwei Klassen.

� EDataType: Repräsentiert den Typ eines Attributes, wie z.B. int, �oat. Es sind aber auch
komplexe Java-Datentypen erlaubt.

Beim Starten einer Modellintegritätsprüfung im EMF wird überprüft, ob ein Objekt den De�ni-
tionen in seinem Metamodell genügt. Hier lässt sich z.B. durch die Eigenschaft Upper Bound und
Lower Bound einstellen, wie oft ein Objekt vorkommen darf, und durch Setzten des Lower Bound

auf 1 erzwingen, dass dieses vorhanden sein muss. Durch die Eigenschaft Unique wird festgelegt,
dass der Wert einer Eigenschaft in allen Instanzen dieser Klasse unterschiedlich sein muss. Durch
die De�nition eines Default Value Literals kann einem Objekt ein Default-Wert gegeben werden.
Dieser wird dann bei der Objekterstellung automatisch eingetragen.

Zu beachten ist, dass die Einführung von Constraints über die Metamodelle Auswirkungen auf
die gesamte Software haben kann, sodass dies nur nach rei�icher Überlegung geschehen sollte. Bei
Änderungen an diesen emp�ehlt sich ein anschlieÿender Regressionstest um sicherzustellen, dass
durch die Einführung eines Constraints nicht die Funktionsweise der Software beeinträchtigt wird.
Dies kann durch die Verwendung von Objekten in verschiedenen Kontexten passieren.

Das Constraint input widget must have event, welches in Kapitel 3.3.4 ausführlich erläutert
ist, stellt ein Beispiel für einen Fall dar, in welchem die Implementierung eines Constraints über das
ECore-Modell nicht möglich ist. Da ECore-Modell-Constraints nicht abgeschaltet werden können
und ein Input Widget im Regelmodell anderen Bedingungen genügen muss als im Structural UI -
Modell, ist hier eine Realisierung als ECore-Modell-Constraint nicht möglich.

2.3.2 OCL

Die Object Constraint Language (OCL) stellt eine Erweiterung von Uni�ed Modeling Language

UML dar, mit welcher Einschränkungen für UML-Modelle de�niert werden können.

1997 wurde Uni�ed Modeling Language (UML) als Standard für objektorientierte Analyse und De-
sign eingeführt. Durch die zahlreichen darin spezi�zierten Diagramme lassen sich auf einheitliche
Weise Objektstrukturen beschreiben und Verhalten modellieren. Damit lassen sich die Konstrukte
eines Systems visualisieren, spezi�zieren und dokumentieren. [Son03]

22

Basis der Arbeit

Es können allerdings nicht alle Aspekte eines Modells mit UML modelliert werden. Speziell zu-
sätzliche Einschränkungen für Objektbeziehungen und Objekteigenschaften, werden oft in natür-
lichsprachlicher Form hinzugefügt. Die Praxis hat gezeigt, dass dies häu�g in Zweideutigkeiten
der Formulierung resultiert. Um dies zu verhindern wurden schon früher formale Sprachen de-
�niert, welche allerdings ein groÿes mathematisches Hintergrundwissen erforderten und für den
durchschnittlichen UML-Modellierer ein Hindernis darstellten. Um diese Lücke zu füllen, wurde
die Object Constraint Language (OCL) entwickelt, als formale Sprache, welche dennoch einfach
zu lesen und zu schreiben ist. [OMG06]

Dies führt dazu, dass Zweideutigkeiten vermieden werden können, Einschränkungen automatisch
überprüft werden können und eine automatische Codegenerierung möglich wird.

Es folgt eine kurze Zusammenfassung der wichtigsten Eigenschaften und Einschränkungen, welche
beim Arbeiten mit OCL beachtet werden müssen.

OCL basiert auf einer dreiwertigen Logik. Das heiÿt, Ausdrücke werden auf die Werte true, false,
unde�ned abgebildet. Unde�ned ist dabei der Rückgabewert einer Operation, wenn diese fehl-
schlägt. Dies kann zum Beispiel passieren durch den Zugri� auf ein Element einer leeren Menge,
Fehler beim Typecasting oder dem Aufruf einer Funktion auf einem null-Objekt. Es führt dazu,
dass dreiwertige Wahrheitstabellen, wie in Tabelle 2.2 dargestellt, benötigt werden.

Tabelle 2.2: Wahrheitstabellen - dreiwertige Logik (0:false 1:true ?:unde�ned) [Son03]

Zu beachten ist, dass OCL keine Programmiersprache darstellt. Deshalb ist es nicht möglich Pro-
grammlogik zu implementieren oder Programm�usskontrolle zu realisieren. [OMG06] Zum Bear-
beiten und Überprüfen von mengenwertigen Typen, sogenannten Collections, stehen allerdings
Iteratoren zur Verfügung, welche diese einer Überprüfung zugänglich machen.

Das Aufrufen von in Klassen de�nierten Methoden ist möglich, es dürfen allerdings nur solche
verwendet werden, welche seitene�ektfrei sind. [OMG06]

2.3.3 Java Constraints

Einschränkungen für Modelle können auch in Java implementiert werden, wobei es durch die
Mächtigkeit der Sprache mehrere Möglichkeiten gibt diese zu realisieren. Hier werden einige dieser
Konzepte betrachtet, welche sich für diese Arbeit als relevant erwiesen.

Es gibt zahlreiche Möglichkeiten in Java Constraints zu implementieren, wie in [FGOG07] dar-
gelegt. Prinzipiell wäre es möglich alle Constraints direkt im Quellcode zu realisieren z.B. durch
bedingte Anweisungen. Dies hat allerdings die folgenden Nachteile:

1. Die Überprüfung eines Constraints an mehreren Stellen im Programm kann zu einer inkon-
sistenten Implementierung führen.

23

Basis der Arbeit

2. Des Weiteren ist es schwierig zu veri�zieren, dass Constraints, welche in einem Analyse und
Design Prozess gefunden wurden, ihre Umsetzung in den Quellcode gefunden haben.

3. Constraints können auch Kontrakte zwischen verschiedenen Systemmodulen betre�en. Eine
implizite Constraint-De�nition unterstützt z.B. nicht das Design-by-Contract Prinzip. Dies
ist ein Konzept aus dem Bereich der Softwareentwicklung mit dem Ziel, das reibungslo-
se Zusammenspiel einzelner Programmmodule durch die De�nition formaler Verträge zur
Verwendung von Schnittstellen zu ermöglichen. Diese Verträge gehen über eine statische
De�nition hinaus [8].

4. Manche Systeme können eine explizite Behandlung der Integritätsbedingungen zur Laufzeit
benötigen.

Die Implementierung einer Constraint-Überprüfung in dedizierten Java-Klassen ist ein Ansatz,
welcher den Code zur Modellintegritätskriterumsprüfung von dem der Applikationslogik trennt.
Der Constraint-Code kann hierbei in validate()-Methoden vorliegen, welche mit entsprechenden
Argumenten aufgerufen werden, wann immer ein spezielles Constraint überprüft werden soll. Die-
ser Ansatz erfordert einen Mechanismus, welcher die validate()-Methode zum passenden Zeitpunkt
aufruft. [FGOG07]

Eine derartige Kapselung des Constraint-Codes in unterschiedliche Klassen erlaubt eine �exible
Handhabung der Integritätsbedingungen. Diese können in einem Constraint-Repository registriert
werden. Wann immer benötigt kann dieses Repository nach Constraints durchsucht werden, basie-
rend auf unterschiedlichen Kriterien, wie zum Beispiel die Klasse des aufgerufenen Objektes oder
die Signatur der aufrufenden Methode. Ein derartiges Constraint-Repository erlaubt des Weiteren
das Hinzufügen, Entfernen, Aktivieren und Deaktivieren von Constraints zur Laufzeit. [FGOG07]

2.3.4 Validation Framework

Das Validation Framework von EMF unterstützt die Entwicklung von Constraints und die Reali-
sierung einer Modellintegritätsprüfung, indem es die Kapselung der Constraints in eigene Klassen
erlaubt und ein Constraint-Repository bietet. Durch die Verwendung dieses Frameworks kann der
Fokus auf die De�nition von geeigneten Constraints konzentriert werden.

Durch einen Extension Point sieht ein Plugin eine Registrierung vor, an der sich Instanzen vor-
merken lassen können, um ein Plugin zu ergänzen. Die registrierende Stelle ist dabei der Extension
Point und die Erweiterung die Extension. Wird in einem Plugin eine Stelle erreicht, die ergänzt
werden kann oder soll, so wird überprüft ob Instanzen registriert sind und, wenn dies der Fall ist,
wird diese Funktionalität ausgeführt. Damit lässt sich ein Plugin erweitern, ohne dass es verändert
werden muss. [HS08]

Im Folgenden eine Zusammenfassung von [5] über die Klassen und Extension Points, welche bei
der Implementierung von Constraints mit diesem Framework zur Verfügung stehen und die Mög-
lichkeiten, die diese erö�nen.

Der Extension Point org.eclipse.emf.validation.constraintProviders wird verwendet, um
Constraints bereitzustellen. Es gibt zwei Arten von Constraints: statische und dynamische. Stati-
sche Constraints werden in der Datei plugin.xml deklariert und können in hierarchisch strukturier-
te Kategorien gruppiert werden. Diese Constraint Provider zielen auf ein oder mehrere EPackages
ab, welche durch ihre namespace-URI identi�ziert werden. Dynamische Constraints zielen auf

24

Basis der Arbeit

Situationen ab, in denen Constraints nicht statisch deklariert werden können, z.B. wenn diese
in Modellen oder anderen Ressourcen de�niert sind. Dynamische Provider deklarieren eine Klas-
se, welche das Interface IModelConstraintProvider implementiert. Diese Klasse sorgt dafür, dass
Constraints zur Verfügung stehen, wenn entsprechende Situationen diese auslösen.

Über den Extension-Point org.eclipse.emf.validation.traversal können die model-traver-

sal-Algorithmen angepasst werden. Dies ist nur für Batch-Validation relevant, da in der Live-
Validation diese nicht ausgeführt werden und beschreibt, wie ein Teilbaum, ausgehend von der
Auswahl durch den Benutzer, durchlaufen wird. Falls kein anderer Algorithmus angegeben wird,
wird über den gesamten Teilbaum mit der Funktion eAllContents() iteriert.

Durch den Extension-Point org.eclipse.emf.validation.constraintParsers können weitere
Constraint-Sprachen eingebunden werden. Das Validation Framework unterstützt von Haus aus
zwei Sprachen: Java und OCL.

Der Extension-Point org.eclipse.emf.validation.constraintBindings erlaubt die De�niti-
on von client contexts, welche die Objekte de�nieren, auf denen eine Modellprüfung durch-
geführt werden soll und bindet diese an Constraints. Der client context kann durch einen
enablement-Ausdruck oder durch ein spezielles selector-Element, welches in einer Selector-
Klasse de�niert wird, gebildet werden. Dabei werden alle Modellelemente, welche die spezi�zierten
Bedingungen erfüllen, dem client context hinzugefügt. Der client context kann an Cons-

traints oder Constraint-Kategorien gebunden werden, wobei in zweitem Fall jedes Constraint in
der Kategorie an den context gebunden wird. Dies hat den Vorteil dass neue Constraints in einer
Kategorie automatisch an den context gebunden werden, sogar wenn das Constraint in einem
Plugin de�niert wurde, welches diesen context nicht kennt.

Der Extension-Point org.eclipse.emf.validation.validationListeners wird verwendet, um
Validation Listener für das Validation Service org.eclipse.emf.validation.service.Model

ValidationService zu de�nieren. Das Validation Service benachrichtigt diesen Listener jedes-
mal, wenn eine Validation vorgenommen wurde. Dies kann dazu verwendet werden, wenn client-

Plugins Informationen über die Validation benötigen, bevor sie geladen werden. Dieser Listener
kann auch im Code zur Laufzeit durch die Methode ModelValidationService.addValidation

Listener() registriert werden.

Das ModelValidationService koordiniert den Aufruf der Validation. Es de�niert eine single-factory
Methode zur Implementierung des IValidatior für die Batch- und Live-Evaluation-Modi. Die
Validatoren prüfen ein oder mehrere Objekte auf einmal. Welche Objekte als Input akzeptiert
werden, hängt vom Evaluierungsmodus ab. Je nach Kon�guration melden sie die erfolgreiche Über-
prüfung von Constraints oder auch das Auftreten von Fehlern, wobei diese Ergebnisse vom Typ
IValidationStatus sind. Der ILiveValidator prüft EMF-Noti�cations, während der IBatch-
Validator EObjects prüft und eine Fortschrittsanzeige unterstützt.

Das Framework stellt mit org.eclipse.emf.validation.xml.IXmlConstraintParser eine Im-
plementierung eines XML-Constraint-Parser-API zur Verfügung, welche XML-Constraints in
OCL unterstützt. Die Klasse OclConstraintParser ist eine Constraint Parser Implementierung,
welche Instanzen der Klasse OclModelConstraint aus XML-Constraint-Deskriptoren erstellt. Unter
Verwendung der Query-Klasse werden Modellelemente gegen OCL-Constraint-Ausdrücke getestet.

Des Weiteren ist es möglich die Modellprüfung direkt aus dem Code aufzurufen.

ValidationClientSelector.setRunning(true);

25

Basis der Arbeit

IBatchValidator validator = (IBatchValidator)

ModelValidationService.getInstance().newValidator(EvaluationMode.BATCH);

validator.setIncludeLiveConstraints(true);

IStatus status = validator.validate(projectSpace);

ValidationClientSelector.setRunning(false);

In status ist das Ergebnis der Prüfung enthalten, welches vom Editor benutzt wird, um die Regel-
verletzungen in der Problems-View anzuzeigen und entsprechende Fehlermeldungen auszugeben.
[3]

2.3.4.1 OCL im EMF

OCL-Constraints werden direkt in die Datei plugin.xml geschrieben oder in einer eigenen Datei
abgelegt, mit einem Verweis auf diese in der plugin.xml.

Constraints können auch fehlerhaften Code enthalten. Zur Laufzeit werden Fehler, die in OCL-
Constraints auftreten, nicht zurückgemeldet, einzig ein Hinweis des Typs Informing weiÿt darauf
hin, dass ein Fehler aufgetreten ist und dieses Constraint deaktiviert wurde. Dieses lässt sich
auch nicht wieder aktivieren und nach einer Änderung am Constraint muss die Testinstanz neu
gestartet werden, um dieses erneut auszuführen. Damit ist eine relativ unkomfortable Variante des
Erstellens gegeben. Besser ist es Constraints in der OCL-Konsole zu entwickeln und die fertigen
Constraints dann in die Datei plugin.xml einzufügen.

Ein Debuggen von OCL-Constraints kann anhand der Fehlermeldungen in der Konsole, nach
aktivieren der Traces in der Runtime-Kon�guration, durchgeführt werden.

2.3.4.2 OCL-Konsole

Mit der OCL-Konsole können OCL-Constraints eingegeben und auf den im Editor ausgewählten
Objekten ausgeführt werden.

Die Konsole unterstützt Code-Completion, indem es für Objekte, die in diesem enthaltenen Ob-
jekte anzeigt und für Objekte die seitene�ektfreien Methoden angibt, welche in OCL verwendet
werden dürfen. Dies stellt eine wesentlich bequemere Form der Erstellung von OCL-Constraints
dar, da diese Funktionalität im Plugin-Editor nicht unterstützt wird.

Die OCL-Konsole ist im OCL Beispiel enthalten. Sie kann durch Window→ Show View→ Console
und Auswahl von �Interactive OCL� gestartet werden.

Als genereller Ansatz bietet es sich an, zuerst die zu überprüfenden Objekte zu sammeln und in
einem zweiten Schritt dann auf diesen Collections die erforderlichen Integritätsprüfungen durch-
zuführen.

26

3 Realisierung von

Modellintegritätsprüfungen für das

UCP-Framework

In diesem Kapitel werden zuerst die angewandten Strategien zur Implementierung dargelegt. Dann
folgt eine Beschreibung der Implementierung der Modellintegritätsprüfungs-Plugins und der im-
plementierten Constraints. Abschlieÿend werden die Ergebnisse der Evaluierung präsentiert.

3.1 Konzepte und Strategien

Aus den in Kapitel 2.3.4 genannten Möglichkeiten für die Implementierung im Rahmen des EMF

Validation Frameworks lieÿen sich einige Strategien für die Realisierung ableiten.

Bei der Implementierung wurden nur Batch-Constraints verwendet und die Möglichkeit von Live-

Constraints aus mehreren Gründen vernachlässigt. Live-Constraints benötigen einen höheren Rea-
lisierungsaufwand, da für jedes Constraint de�niert werden muss, durch welche Benutzeraktionen
im Editor eine Integritätsprüfung gestartet wird. Für Transformationsregel- und Structural UI -
Constraints sind Live-Constraints ohnehin unnötig, da diese Modelle nicht dazu gedacht sind in
einem graphischen Editor bearbeitet zu werden. Im Diskurseditor zeigt sich, dass im Entwick-
lungsprozess eines Diskursmodells nahezu jede Aktion zahlreiche Fehler auslösen würde. So würde
das Hinzufügen einer prozeduralen Relation Joint dazu führen, dass dieses zum Erstellungszeit-
punkt keine Links zu anderen Objekten hat und entsprechende Fehlermeldungen auslösen. Diese
Links werden erst in den nächsten Arbeitsschritten hinzugefügt. Aus diesem Beispiel ist ersichtlich,
dass das Erstellen und Bearbeiten von Diskursmodellen gleichsam immer eine zwischenzeitliche
Verletzung der Modellintegrität darstellt. Erst wenn das Modell fertig erstellt ist oder wenn im
Entwicklungsprozess einzelne Objekte überprüft werden sollen, ist eine Prüfung sinnvoll. Hierbei
ist dann auch die Fehleranzahl signi�kant geringer und auf solche beschränkt, welche tatsächlich
einer Behandlung bedürfen und nicht im nächsten Bearbeitungsschritt ohnehin behoben werden
würden. Des Weiteren ist die Ausführung der Live-Validation von den Benutzeraktionen abhängig,
je nach Arbeitsstil und benötigten Constraints führt dies zu einem unterschiedlich hohen Aufwand
an Rechenleistung und Speicher.

Aus diesen Gründen wurde auf eine Live-Validation verzichtet. Die Überprüfung der Modelle wird
vom Benutzer gestartet. Auch eine automatische Überprüfung der Modelle vor einer Modelltrans-
formation ist möglich.

27

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Damit das Modell im Editor ständig alle Modellintegritätskriterien erfüllt, wäre ein anderer An-
satz für den Editor von Nöten. Dabei würde der Benutzer nicht nur einzelne Elemente erstellen,
sondern einen ganzen Zweig, als atomare Aktion kreieren und Modellelemente nicht verändern,
sondern in andere Elemente transformieren, entsprechend den Modellintegritätskriterien. Dies
könnte allerdings die Erstellung eines Modells komplizierter gestalten als die derzeitige Lösung.

Für die Modellintegritätsprüfung von Diskurs-, Structural UI - und Transformationsregel-Modellen
wurde jeweils ein eigener Validation-Adapter implementiert. Dadurch lässt sich jeder Adapter auf
alle Elemente eines Modells anwenden, und der Kon�gurationsaufwand bleibt gering.

So weit es sinnvoll und realisierbar war, wurden die vorhandenen Constraints in OCL erstellt,
da deren Entwicklung im Allgemeinen schneller zu bewerkstelligen war als entsprechende Java-
Constraints zu implementieren. Im Folgenden darf daher angenommen werden, dass die konkrete
Implementierung in OCL vorliegt, sofern nicht anders angegeben.

Eine komplette Liste aller implementierten Constraints �ndet sich in Anhang A. Im Falle von
OCL-Constraints ist deren Code direkt eingefügt, bei Java-Constraints ist der Name der Klas-
se angegeben, in welcher diese implementiert sind. Des Weiteren ist festgehalten, auf welchen
Objekten diese Überprüfung ausgeführt wird und welche Fehlermeldung durch dieses Constraint
ausgegeben wird, falls die Überprüfung einen Fehler �ndet.

Die Reihenfolge der Erklärung im Text weicht von der im Anhang ab, da diese die Darstellung im
Programm wiederspiegelt, welche auf deren Verwendung im Code zugeschnitten ist. Die Erklärung
der Constraints in diesem Kapitel entspricht einem Diskursmodell besser und der logische Ablauf
ist auf diese Art und Weise besser zu veranschaulichen.

3.2 Validation Framework

Das EMF besitzt ein Validation Framework, dessen grundlegende Funktionen bereits in Kapitel
2.3.1 dargelegt wurden. Hier wird nun gezeigt, wie dieses verwendet wurde, um die Modellintegri-
tätsprüfung zu realisieren.

3.2.1 Implementierung des Validation Framework

Für die Verwendung des Validation Frameworks sind einige Einstellungen notwendig, welche im
Folgenden erläutert werden.

Die Implementierung des EMF Validation Frameworks kann an den folgenden drei Beispielen
studiert werden:

� OCL Example

� General Validation Example

� Validation Adapter Example

Deren Code kann über File → New → Example → in ein Eclipse-Projekt eingebunden werden.
Um mit diesen Beispielen zu arbeiten, muss auch das Library Example eingebunden werden. Von

28

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

diesen Beispielen ausgehend gibt es einige Tutorials im Internet, welche das Einbinden einer Mo-
dellintegritätsprüfung in ein eigenes Projekt erleichtern. Anhand von [1] und [2] wurden die beiden
Möglichkeiten der Implementierung studiert und auf deren Basis schlieÿlich die drei Validation-
Adapter für die zu prüfenden Modelle implementiert.

Der Validation-Adapter implementiert hierbei die Kernfunktionalität, welche durch die in dem
General Validation Example gezeigten Möglichkeiten erweitert wird, in einem Editor ein Kontext
Menü zu erstellen und an die Bedürfnisse anzupassen. Damit kann zum Beispiel die Live-Validation
ein- oder ausgeschaltet werden oder eine Validation des gesamten Modelles gestartet werden. Da
dies nicht benötigt wird, wurde nur der Validation-Adapter verwendet.

Ausgehend vom Validation Adapter Example muss dazu in der Datei Startup.java die Methode
earlyStartup() modi�ziert werden, indem das EXTLibraryPackage durch den Packagenamen
des verwendeten Metamodelles ersetzt wird. Dann muss in der Datei plugin.xml die NS-URI an das
eigene Modell angepasst werden. Nach einer Anpassung der Dependencies und der Imports ist der
Adapter bereit und kann nach De�nition von Constraints verwendet und an das Projekt angepasst
werden. Eine ausführliche Anleitung dazu �ndet sich in [1]. Gestartet wird die Integritätsprüfung
durch Rechtsklick auf ein zu prüfendes Modellelement in der Baumansicht und Klick auf den
Kontextmenüpunkt Validate.

3.2.2 Validation-Plugins

Die De�nition eines Plugins erfolgt in der Datei plugin.xml durch die Kon�guration der extension
points.

Die Constraints werden in der Datei plugin.xml registriert, in Kategorien geordnet und ihrem
Kontext zugewiesen. Dazu stehen zwei Möglichkeiten zur Verfügung. Man kann die Datei plu-
gin.xml per Texteditor schreiben oder über die Ansicht �extensions� die benötigten Eigenschaften
in einem graphischen Editor eintragen.

Es werden zwei extension points benötigt:

extension point= �org.eclipse.emf.validation.constraintBindings�

extension point= �org.eclipse.emf.validation.constraintProviders�

In den constraintBindings, siehe Abbildung 3.1, wird zuerst der clientContext de�niert, wobei
im Feld enablement festgelegt wird, für welche Objekte eine Modellintegritätsprüfung, mit den,
im constraintProvider de�nierten Constraints, durchgeführt wird. In diesem Fall muss es eine
Instanz vom Typ EObject sein, welche in dem im Feld value angegebenen namespace vorkommt.

Anschlieÿend werden dem Context im Feld binding Constraints zugewiesen. Dies kann, wie im
Beispiel gezeigt, durch die Angabe einer oder mehrerer Constraint-Kategorien geschehen. Genau-
so wäre auch das Eintragen von einzelnen Constraints möglich. Die categories sind in einem
hierarchischen Baum organisiert, wobei die einzelnen Hierarchieebenen durch einen Schrägstrich
getrennt werden. Wird eine Kategorie angegeben, sind auch automatisch alle Unterkategorien an
den Kontext gebunden.

Im extension point constraintProviders, siehe Codebeispiel Abbildung 3.2, werden die Ka-
tegorien de�niert, in welche die Constraints anschlieÿend eingeteilt werden. In der Id wird der
gesamte Pfad eingetragen, unter welchem diese Constraint-Kategorie später in den Preferences
der Testinstanz zu �nden sein wird.

29

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Abbildung 3.1: Extension Point - Constraint Bindings

Im Constraint Provider wird zuerst der namespace de�niert, auf welchem das Constraint target
sensitiv ist. Im Punkt Constraints werden Unterkategorien de�niert, wo die im weiteren Verlauf
implementierten Constraints einzuordnen sind. Es besteht auch die Möglichkeit Constraints als
mandatory zu de�nieren, was dazu führt, dass diese immer ausgeführt werden. Dann erfolgt die
eigentliche Constraint De�nition:

� id
Jedes Constraint benötigt eine eindeutige Id.

� name
Dieser spezi�ziert, unter welchem Namen es später in den Preferences der Testinstanz an-
gezeigt wird.

� lang
Für ein jedes Constraint wird unter lang die Sprache de�niert, in welcher das Constraint
implementiert ist. Dies wird im Allgemeinen entweder OCL oder Java sein.

� class
Im Fall von Java-Constraints muss die Klasse angegeben werden, in welchem sich der Cons-
traint-Code be�ndet. Bei OCL-Constraints fehlt diese.

� mode
Im Feld mode wird angegeben, ob es sich um ein Live- oder Batch-Constraint handelt. Live-
Constraints werden zur Laufzeit überprüft, wenn eines der angegebenen Features aufgerufen
wird. Batch-Constraints werden nach dem expliziten Aufruf der Modellintegritätsprüfung
überprüft.

� severity
Es gibt mehrere severity-Grade, durch welche angeben wird, wie schwerwiegend die Ver-
letzung dieses Constraints ist. Diese reichen von ERROR über WARNING bis INFO.

� statusCode
Schlussendlich muss für jedes Constraint ein statusCode de�niert werden.

30

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Abbildung 3.2: Extension Point - Constraint Provider

� message
In message wird für jedes Constraint die auszugebende Fehlermeldung de�niert. {0} wird
hier verwendet, um das Objekt, auf welchem die Überprüfung durchgeführt wurde, anzuzei-
gen.

� description
Im Feld description kann eine Beschreibung des Constraints angegeben werden, welche
auch in den Preferences angezeigt wird.

� target
In Target wird die Objekt-Klasse angegeben, auf welcher das Constraint angewendet wer-
den soll. Hier können für Live-Constraints auch Ereignisse durch das Feld events angegeben
werden, durch welche eine Modellintegritätsprüfung zur Laufzeit ausgelöst wird.

Die Constraint-Namen wurden möglichst so vergeben, dass aus diesen hervorgeht, was diese
überprüfen. Die Ids bestehen aus constraint und einer vierstellig gewählten Nummer, wobei

31

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

die ersten beiden Zi�ern die Gruppe identi�zieren, in welche dieses Constraint eingeordnet ist
und die restlichen Zi�ern die Constraints einer Gruppe durchnummerieren. Der statusCode ist
gleich dieser Id-Nummer. Zum Speichern der Java-Constraints wird in jedem Adapter ein Packa-
ge org.ontoucp.{Modellname}.validation.adapter.constraints verwendet. Als Modus wird
immer Batch verwendet, aus den in Kapitel 3.1 genannten Gründen. Es werden nur die severity
Grade ERROR und WARNING verwendet. ERROR wird für die Kennzeichnung von kritischen Modell-
fehlern und WARNING wird für Elemente, die möglicherweise einen Fehler enthalten, verwendet.
Der severity-Grad INFO wird nicht verwendet. Dies stellte sich bei der Implementierung als Vor-
teil heraus, da Laufzeitfehler in Constraints bei der Modellintegritätsprüfung eine Fehlermeldung
der severity INFO nach sich ziehen, und dadurch leicht zu identi�zieren sind.

OCL-Constraints werden direkt in der Datei plugin.xml abgelegt, wobei es sich emp�ehlt den
Constraint-Code mit <![CDATA[OCL constraint]]> zu umgeben, da für OCL-Constraints häu-
�g Sonderzeichen benötigt werden, welche im Standarttext eines plugin.xml nicht erlaubt wären
und ungeklammert zu Fehlern führen würden.

Im Gegensatz dazu muss für jedes Java-Constraint eine eigene Klasse implementiert werden, wel-
che das Interface IValidate implementiert und eine Fehlerliste bzw. eine Erfolgsmeldung zurück
gibt. Diese Klasse muss auch in der Datei plugin.xml durch das Attribut class= �org.ontoucp.

{Modellname}.validation.myConstraint� im Feld Constraint registriert werden.

Welche Constraints überprüft werden, hängt zum Einen davon ab, welcher Kontext für die Mo-
dellintegritätsprüfung angegeben ist, und zum Anderen hängt es davon ab, welche Constraints im
Menüpunkt Preferences unter Modelvalidation aktiviert sind.

Verletzungen von Constraints werden nach der Prüfung in einem eigenen Fenster angezeigt bzw.
wird die Meldung �Validation completed successfully� ausgegeben. Fehlermeldungen bleiben in
der Problems-View gespeichert, von wo aus durch Doppelklick auf den Fehler direkt zu dem
fehlerhaften Objekt im Editor gesprungen werden kann.

Auch ein Aufruf der Modellintegritätsprüfung aus dem Code, z.B. vor der Transformation eines
Modells ist, wie in Kapitel 2.3.4 angesprochen, möglich.

3.3 Implementierung der Constraints

Ausgangspunkt für die Entwicklung der Constraints stellte eine Liste von bekannten Fehlerquellen
dar, zwei Bespielmodelle und natürlich das UCP-Framework mit Editoren für seine Modelle, auf
welchem diese getestet werden konnten.

3.3.1 Implementierungs-Strategien

Im Zug der Erstellung der Constraints erwiesen sich einige Vorgehensweisen als zielführend.

Die Implementierung von OCL-Constraints erfolgte in der OCL-Konsole. Hier lieÿen sich diese we-
sentlich schneller und komfortabler erstellen und testen, als dies in der plugin.xml möglich war. Als
zielführend erwies es sich, zuerst die Objekte einzusammeln und zu �ltern, bis genau die benötigte
Submenge übrig war, auf welcher dann die Überprüfung implementiert wurde. Schlussendlich wur-
de ein fertiges Constraint dann auf den fehlerfreien Beispielmodellen und einem Modell, welches
genau den durch das Constraint abzufangenden Fehler enthält, getestet.

32

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Für die Implementierung der Java-Constraints wurde eine Muster validate()-Methode erstellt,
welche dann als Basis für alle weiteren Constraints verwendet wurde. Diese ist in Abbildung
3.3 dargestellt. Hierbei wird die Liste problems erstellt, welche dann mit den Verletzungen der
Modellintegritätskriterien befüllt wird. Die Objekte, welche in jedem Fall bei der Implementierung
an das Constraint angepasst werden müssen, um ein lau�ähiges Constraint zu erhalten, sind rot
unterwellt. Falls diese schlussendlich leer ist, wird eine Erfolgsmeldung zurückgegeben, ansonsten
eine Liste der aufgetretenen Fehler.

Abbildung 3.3: validate()-Methode

3.3.2 Diskursmodell-Constraints

Im Folgenden werden die Modellelement-Klassen eines Diskurses betrachtet, zuerst deren Eigen-
schaften dargelegt und hinsichtlich notwendiger Überprüfungen evaluiert. Anschlieÿend werden
die Beziehungen eines jeden Elements zu anderen Diskurselementen hinsichtlich notwendiger Be-
dingungen für die Modellintegrität betrachtet.

Der Ausgangspunkt für die Entwicklung der Diskursmodell-Constraints war zum Einen eine Liste
von bekannten Fehlerquellen des Entwicklerteams, zum Anderen eine Evaluierung des Diskursmo-
delleditors, hinsichtlich der Möglichkeiten dessen, was modelliert werden kann, gegen das, was nach
den eingangs erwähnten Theorien erlaubt ist und transformiert werden kann. Diese Constraints
�nden sich im Anhang A.

Die Gruppierung und Implementierung der Constraints wurde so vorgenommen, dass ein möglichst
komfortables Arbeiten ermöglicht wird. Dazu wurden die Warnings in eine Gruppe zusammenge-
fasst, sodass diese in den Preferences→ Model-Validation durch ein einziges Häkchen abgeschaltet

33

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

werden können. Die restlichen Constraints wurden thematisch gruppiert. Dadurch können z.B.
Relationen überprüft werden, ohne dass auch sämtliche Adjacency Pairs, Communicative Acts

und Inserted-Sequences überprüft werden. Dadurch soll ein möglichst einfaches Debuggen eines
Modelles möglich werden.

3.3.2.1 Diskurs

Ein Discourse-Objekt hat folgende Eigenschaften:

� goal String Array
Beschreibt das Ziel, welches durch diesen Diskurs erreicht werden soll.

� name String
Gibt dem Diskurs einen Namen.

� Action-Models EObject Array
De�niert die Action-Modelle, welche in diesem Diskurs Verwendung �nden.

� Domain-Models EObject Array
De�niert die Domain of Discourse-Modelle, welche in diesem Diskurs Verwendung �nden.

Des Weiteren kann ein Diskurs die folgenden Objekte beinhalten:

� nodes Node Array
Nodes stellen die Generalisierung von Relationen und Adjacency Pairs dar.

� agents SenderAgent Array
De�niert die Aktoren dieses Diskurses.

� communicativeActs communicativeAct Array
Beinhaltet alle Communicative Acts dieses Diskurses.

� subDiscourses Discourse Array
Weitere Diskurse, welche in diesem Diskurs enthalten sind.

� links Link Array
Diese verbinden Relationen und Adjacency Pairs.

Die Überprüfung, ob ein Diskurs-Objekt gültig ist, erfolgt durch das Constraint check AM, DM,
Agent, Roots. Dieses wurde in Java realisiert, da die Überprüfung, ob ein Diskurs-Objekt die
oberste Instanz darstellt, durch die Überprüfung discourse.eContainer() == null geschieht,
welche in OCL nicht realisiert werden konnte. Im Hauptdiskurs-Element müssen zumindest ein
Action-Modell, in den meisten Fällen das Basismodell, welches in der Datei basic.anm vorliegt,
ein Domain of Discourse-Modell und zwei Agenten de�niert sein. In Inserted-Sequences müssen
eben diese Felder leer sein. Da Subdiskurse derzeit nicht implementiert sind, wird von deren
Überprüfung abgesehen und ihnen zugehörige Objekte werden beim Erstellen von Objektmengen
vernachlässigt.

Jeder Diskurs benötigt genau einen Root-Node, welcher den Ausgangspunkt für den Kommunika-
tionsablauf in diesem Diskurs darstellt und dadurch de�niert ist, dass er keinen Parent besitzt.

34

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Die Funktion discourse.getRootNodes() liefert all jene Objekte, auf welche dies zutri�t und
wäre auch seitene�ektfrei, sodass einer Lösung als OCL-Constraint nichts im Wege stehen würde.
Der Doppelklick auf eine Fehlermeldung just one root node allowed, würde im Diskurseditor
allerdings auf das Diskurs-Objekt springen, und vom Benutzer eine Suche verlangen, welches von
all den diesem Diskurse zugehörigen Objekten das Fehlerhafte ist. Bei der Realisierung als Java-
Constraint, wurde von der Möglichkeit der De�nition eines Locus in der Fehlermeldung Gebrauch
gemacht, sodass für jeden Root-Node nun eine Fehlermeldung generiert wird und der Editor auf
Doppelklick zu dem entsprechenden Objekt springt.

Des Weiteren sollten in einem Diskurs noch durch die Eigenschaften name und goal ein Name und
ein Ziel de�niert sein. Diese sind allerdings nicht zwingend erforderlich und haben auf die Modell-
transformation keinen Ein�uss. Wohl aber dienen sie der Übersichtlichkeit und Verständlichkeit.
Aus diesem Grund stellt ihre Abwesenheit und damit die Verletzung der Constraints name not
empty und goal not empty keinen Error sondern lediglich eine Warning dar.

3.3.2.2 Modellstruktur

Die Topologie aller Objekte in einem Diskurs muss ein Baum sein, was durch das Constraint check
for loops überprüft wird. Dies ist bei Adjacency Pair, Communicative Act und Content-Objekten

implizit gegeben, da Adjacency Pairs und Communicative Acts keine Relationen als Nachfolger
haben können und in Adjacency Pairs immer ein oder mehrere Communicative Acts eingetragen
werden.

Bei RST-Relationen und prozeduralen Relationen besteht allerdings die Möglichkeit, diese zu
einem Zyklus zu formen, in dem jede Relation den Parent einer anderen Relation darstellt, siehe
Abbildung 3.4.

Abbildung 3.4: Zyklus aus Relationen

Diese hätten keinen Root-Node und wären damit in einem normalen Diskurs nie zu erreichen. Sie
können im graphischen Diskurseditor gezeichnet werden, werden allerdings nicht angezeigt, da sie
keinen Baum darstellen. Sie sind allerdings in der XML-Datei des Modells gespeichert und werden
an die Transformationsmethode übergeben, sofern sie nicht abgefangen werden.

Für die Generierung von Endlosschleifen oder den Aufbau von Iteratorbasierten-Strukturen, wel-
che wiederholt ausgeführt werden, steht die prozedurale Relation IfUntil zur Verfügung. Diese
IfUntil -Konstrukte können transformiert und in ein User Interface umgewandelt werden.

Die Vorgehensweise hierbei ist, in einem ersten Schritt alle RST-Relationen und prozeduralen
Relationen eines Diskurses �einzusammeln�. Dann wird für jede Relation versucht, im Baum �auf-
wärts zu gehen�, Parent für Parent, und jede Relation in einer Liste abzulegen, wobei bei jeder

35

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

neuen Relation überprüft wird, ob sich diese bereits in dieser Liste be�ndet. Ist dies der Fall, so
bewegt sich der Algorithmus im Kreis und bricht mit einer entsprechenden Fehlermeldung ab.
Wird hingegen eine Relation ohne Parent-Relation erreicht, d.h. ein Root-Node, so kann daraus
geschlossen werden, dass eine Baum-Topologie vorliegt.

Durch das Ausgeben von Fehlermeldungen mit einem Locus auf das Element, welches beim �Auf-
wärtsgehen� im Baum zweimal erreicht wird, �ndet sich schlussendlich eine Liste von Fehlermel-
dungen mit den Relationen, welche Teil der Schleife sind und von denen jede im Diskurseditor
über die Problem-Ansicht von Eclipse erreicht werden kann.

Dieses Constraint wäre prinzipiell auch in OCL realisierbar. Zwar steht in OCL keine �Schleifen-
funktionalität� zur Verfügung, es wäre allerdings eine Lösung bis zu einer gewissen �x festgelegten
Tiefe denkbar. Dadurch wäre aber die maximale Tiefe, bis zu welcher das Modell nach Schleifen
durchsucht werden kann, �x festgelegt und die Implementierung wäre signi�kant schwieriger als
bei einer Implementierung in Java. Aus diesem Grund wurde dieses Constraint in Java realisiert.

3.3.2.3 Agenten

Ein Agent hat folgende Eigenschaften:

� Id String
Gibt einem Agenten eine eindeutige Id.

� Name String
Gibt einem Agenten einen Namen.

� Performs Communicative Act Array
De�niert die Communicative Acts, welche von diesem Agenten ausgeführt werden.

� Relations Relation Array
De�niert die Relationen und prozeduralen Relationen, welche von diesem Agenten ausgeführt
werden.

Ein jeder Agent benötigt eine eindeutige Id. Diese muss entweder �A� oder �B� sein. Dies wird
durch das Constraint id not empty and A oder B überprüft, welches in Kapitel 3.3.2.7 näher
beschrieben ist.

Ein Agent kann einen Namen haben. Da dies lediglich der Verständlichkeit des Modells dient, ist
diese Überprüfung als Warning durch das Constraint name not empty realisiert.

Da in die Felder Performs und Relations nur Communicative Acts , Relationen oder prozedurale
Relationen eingetragen werden können und dies durch den Editor automatisch vorgenommen wird,
sobald einem Communicative Act, einer Relation oder einer prozeduralen Relation ein Agent
zugewiesen wird, ist eine Überprüfung dieser beiden Eigenschaften nicht notwendig.

3.3.2.4 Relationen

RST-Relationen und prozedurale Relationen haben folgende Eigenschaften:

36

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

� Agent Agent
Gibt, wo benötigt, den Agent an, welcher die Entscheidung tri�t.

� Children Link Array
De�niert die Links, welche von dieser Relation ausgehen.

� Parent Link
De�niert den Parent-Link.

� Name String
De�niert einen Namen.

Die Relationen IfUntil, Condition und Elaboration benötigen einen Agenten. Dieser de�-
niert welcher Kommunikationsteilnehmer über den weiteren Kommunikationsablauf entscheidet.
Dass diese einen Agenten besitzen, wird durch das Constraint some relations need an agent
überprüft.

Jede konkrete Spezialisierung einer Relation benötigt bestimmte Children-Links, diese werden im
Folgenden ausführlich dargelegt. Bei den Modellintegritätsbedingungen für diese gibt es zahlreiche
Gemeinsamkeiten, sodass sie in verhältnismäÿig wenigen Constraints zusammen gefasst werden
können. Tabelle 3.1 gibt an, welche Relation welche Link -Typen und wie viele davon haben kann
bzw. haben muss.

Der Parent-Link kann nicht in den Eigenschaften eingetragen werden, dies wird vom Editor au-
tomatisch vorgenommen, wenn zu einer Relation ein Link gezogen wird bzw. wenn zu einem Link

eine Child -Relation erstellt wird. Relationen ohne Parent stellen Root-Nodes dar. Die Überprü-
fung, welche sicherstellt, dass genau einer vorhanden ist, ist in Kapitel 3.3.2.1 beschrieben. Eine
Relation kann einen Namen haben. Da dies lediglich der Verständlichkeit des Modelles dient, ist
diese Überprüfung als Warning durch das Constraint name not empty realisiert.

RSTSingleNucleusRelationen müssen im Allgemeinen genau einen Nucleus und einen Satellite

besitzen. Dazu werden in einem ersten Schritt alle Children überprüft, ob deren LinkType Nucleus

oder Satellite ist und in einem zweiten Schritt sichergestellt, dass jeweils eines von jedem Typ
vorhanden ist. Davon ausgespart bleibt die Relation Result, da es Sonderfälle gibt, in welchen
diese nur einen Nucleus aber keinen Satellite besitzen darf. Da dies in den meisten Fällen eher
einen Fehler denn ein gewünschtes Verhalten modelliert, wird vom Constraint result 1 n eine
Warnung ausgegeben. In keinem Fall allerdings darf ein Result mehr als einen Satellite besitzen,
was durch ein weiteres Constraint result 1 n s=2..* sichergestellt wird.

Multinucleusrelationen und die prozedurale Relation Sequence benötigen zwei oder mehr Nuclei.
Diesem Umstand wird in dem Constraint MultiNucleusRelation and Sequence 2..* n analog
dem der RSTSingleNucleusRelationen Rechnung getragen.

Eine Sequence benötigt eine eindeutige Ordnung ihrer Nuclei. Diese Ordnung der Zweige er-
folgt anhand der Werte der Eigenschaft condition. Die Conditions aller Nuclei einer Sequence
müssen eindeutig von einander unterscheidbar sein, was durch das Constraint sequence ordered
überprüft wird.

Die prozedurale Relation Condition benötigt zwingend einen Then-Link und einen Else-Link,
was durch Condition 1 then 1 else überprüft wird.

Ein IfUntil fordert einen Tree, die Zweige Then und Else sind optional und auf maximal einen
limitiert. Falls die Repeat-Condition eines Tree-Links leer ist, wird dieser Tree-Zweig ständig

37

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Relation Nuclei Satellite Tree Then Else
Joint
Contrast 2..* 0 0 0 0
Alternative
Sequence
IfUntil 0 0 1 0..1 0..1
Condition 0 0 0 0..1 0..1
Background
Elaboration 1 1 0 0 0
Annotation
Title
Result 1 0..1 0 0 0

Tabelle 3.1: Links für Relationen und prozedurale Relationen

wiederholt. Da ein endlosschleifenbildendes IfUntil manchmal schwer zu �nden sein kann, wird
vom Constraint tree has empty repeat condition eine Warnung ausgegeben, um den User auf
diesen Umstand hinzuweisen.

Falls ein Else-Zweig aber kein Then-Zweig vorhanden ist, muss angenommen werden, dass dieser
vergessen oder gelöscht wurde. Dieser Else-Zweig verursacht keine Fehler bei der Transformation,
er wird allerdings niemals ausgeführt werden, daher wird vom Constraint else needs a then nur
eine entsprechende Warnung ausgegeben.

Die Überprüfung von Elaboration, Titel, Annotation und Background hinsichtlich der
Typen ihrer Satellite-Zweige, wie in Kapitel 2.2.1.1 beschrieben, wurde nicht realisiert. Ein Grund
dafür ist, dass dies nur der Darstellung dient, und ein Fehler hier sofort im fertigen User Inter-

face ersichtlich ist. Ein weiterer Grund ist, dass dies keinen Absturz des Programms nach sich
zieht, und das schlussendliche Aussehen des User Interfaces hauptsächlich durch die de�nierten
Formatierungen beein�usst wird.

3.3.2.5 Links

Links besitzen die folgenden Eigenschaften:

� ConditionString
De�niert die Bedingung, unter welcher der durch diesen Link repräsentierte Kommunikati-
onszweig weiterverfolgt wird.

� Condition Abstract Syntax Tree (AST) String
Enthält die Bedingung in geparster Form.

� Repeat Condition String
De�niert die Bedingung, unter welcher der Tree-Zweig eines IfUntil wiederholt wird.

� Repeat Condition AST String
Enthält die Wiederholungsbedingung in geparster Form.

� Child Relation oder Adjacency Pair
De�niert das Zielobjekt, mit welchem die Parent-Relation verbunden wird.

38

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

� Parent-Relation
De�niert die Parent-Relation.

� Type LinkType
De�niert den Typ dieses Links.

Condition und Repeat Condition werden in einer speziellen Sprache formuliert, näheres dazu
in Kapitel 3.3.2.8. Diese beiden Felder werden geparst und ihr Ergebnis in den zugehörigen AST
Feldern abgelegt.

Jeder Link muss einen LinkType besitzen, welcher einen der folgenden Typen sein kann:

� NUCLEUS

� SATELLITE

� THEN

� ELSE

� TREE

Die von der Klasse ProceduralRelation abgeleiteten prozeduralen Relationen Sequence,
IfUntil und Condition dürfen nur Links vom Typ Tree, Then und Else besitzen, während von
der Klasse RSTRelation abgeleitete Relationen nur Links vom Typ Nucleus und Satellite

besitzen dürfen.

Ein Tree-Link darf nur an IfUntil angehängt werden, was durch das Constraint tree parent
ifuntil überprüft wird. Then- und Else-Links dürfen nur an IfUntil oderConditions angehängt
werden, dies wird durch then, else parent ifuntil or condition überprüft.

Ein Then-Link benötigt eine Bedingung, wann dieser ausgeführt werden soll, ansonsten wird
der Else-Link gewählt, sofern dieser vorhanden ist. Durch then must have a condition wird
überprüft, ob diese de�niert ist. Damit wird allerdings nicht sichergestellt, dass diese Bedingung
auch korrekt ist, lediglich deren Vorhandensein wird überprüft.

Ein Tree-Link darf eine Repeat-Condition besitzen, allerdings keine Condition. Dies wird durch
das Constraint in tree condition must not be set überprüft.

Die Überprüfung von Links ist insofern wichtig, als diesen keine Namen zugewiesen werden kön-
nen, wodurch eine Fehlersuche im Diskurseditor zu einer zeitraubenden und mühsamen Suche
wird. Da Links einen maÿgeblichen Ein�uss auf das Modellverhalten haben, ist das Überprüfen
ihrer Integrität ein relevanter Faktor, damit aus einem Diskursmodell ein User Interface generiert
werden kann.

Links verknüpfen Relationen untereinander bzw. diese mit Adjacency Pairs. Dazu werden sie in
die Eigenschaften parent und child eingetragen. Dies wird im graphischen Editor automatisch
vorgenommen, sobald eine Verbindung erstellt wird. Wird einer Relation oder einem Adjacen-

cy Pair, welche bereits einen Parent haben, ein neuer Parent zugewiesen, so bleibt vom alten
Link eine �Leiche� ohne parent zurück, welche erst später bei einem Update gelöscht wird. Dies
führt zu einer zwischenzeitlichen Verletzung der Modellintegrität, welche durch das Constraint

parent child set erkannt wird, welches das Vorhandensein dieser beiden Parameter für jeden
Link überprüft.

39

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

3.3.2.6 Adjacency Pairs

� Opening Communicative Act Communicative Act
Gibt an, welcher Communicative Act dieses Adjacency Pair erö�net.

� Closing Communicative Acts Communicative Act Array
Enthält die Communicative Acts, welche dieses Adjacency Pair schlieÿen.

� Parent-Link
De�niert den Parent-Link.

� Name String
Gibt dem Adjacency Pair einen Namen.

Ein Adjacency Pair stellt ein Dialogelement dar, welches typische Kombinationen von Commu-

nicative Acts verknüpft z.B. Frage-Antwort. Deshalb wird im Constraint AP must have an
opening act überprüft, ob jedes Adjacency Pair einen Opening Communicative Act hat, welcher
eine Frage oder ein Informing darstellt.

check closing CA stellt sicher, dass Closing Communicative Acts vorhanden sind, sofern der
Opening Communicative Act nicht vom Typ Informing ist. Welche Communicative Acts vom Typ
Opening oder Closing sind, ist aus Tabelle 2.1 ersichtlich.

Ein Adjacency Pair kann einen Namen haben. Da dies lediglich der Verständlichkeit des Modelles
dient, ist diese Überprüfung als Warning durch das Constraint name not empty realisiert.

Der Parent-Link kann nicht in den Eigenschaften eingetragen werden, dies wird vom Editor au-
tomatisch vorgenommen, wenn zu einem Adjacency Pair ein Link gezogen wird bzw. wenn zu
einem Link ein Child-Adjacency Pair erstellt wird. Adjacency Pairs ohne Parent stellen Root-

Nodes dar. Die Überprüfung, welche sicherstellt, dass genau einer vorhanden ist, ist in Kapitel
3.3.2.1 beschrieben.

3.3.2.7 Communicative Acts

� belongs To Agent
Gibt den Agent an, welcher diesen Communicative Act durchführt.

� Opening Communicative Act Parent Adjcency Pair
Gibt das Adjacency Pair an, welches durch diesen Communicative Act erö�net wird.

� Closing Communicative Act Parent Adjacency Pair
Gibt das Adjacency Pair an, welches durch diesen Communicative Act beendet wird.

� Id String
Gibt dem Communicative Act eine Id.

� Name String
Gibt dem Communicative Act einen Namen.

40

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Ein Communicative Act kann einen Namen haben. Da dies lediglich der Verständlichkeit des Mo-
dells dient, ist diese Überprüfung als Warning durch das Constraint name not empty realisiert.

Die Communicative Acts eines Adjacency Pairs repräsentieren die Dialogelemente. Diesen Com-

municative Acts muss ein Agent zugewiesen werden, das heiÿt, es muss angeben werden, welcher
Kommunikationsteilnehmer die Frage stellt und welcher die Antwort darauf gibt. Falls Frage und
Antwort demselben Agent zugewiesen sind, stellt dies ein Selbstgespräch dar, welches dem Kom-
munikationsprozess nicht dienlich ist. Um dies zu verhindern, wird durch di�erent opening and
closing CA - Agent überprüft, ob der Opening Communicative Act eines Adjacency Pair einen
Agenten hat, welcher sich von den Agenten der Closing Communicative Acts unterscheidet.

Es ist zu beachten, dass ein Adjacency Pair nur 1 Opening Communicative Act haben kann,
wohl aber mehrere Closing Communicative Acts. Opening Communicative Acts müssen vom Typ
Question, Request, Offer oder Informing sein, dies wird durch das Constraint openingCA
of type cQ oQ Req O� Inf überprüft, entsprechend Tabelle 2.1.

Closing Communicative Acts müssen vom Typ Answer, Accept, Reject oder Ok sein, was durch
closingCA of type Answ Acc Rej ok überprüft wird.

Ein Communicative Act könnte durch De�nition sowohl eines Closing- als auch eines Opening

Communicative Act-Parent zwei Adjacency Pairs bzw. demselben Adjacency Pair zugeordnet
werden. Damit würde zum Einen die Modelltopologie keinen Baum mehr darstellen und zum
Anderen ein Selbstgespräch modelliert. Dieser Fehler wird auch durch die Überprüfung des Typs
im vorhergehenden Absatz abgefangen, durch das Constraint opening xor closing wird aber die
Fehlerursache besser aufgezeigt.

Des Weiteren wird durch check content not empty überprüft, ob Communicative Acts vom Typ
Accept, Answer, Ok und Reject ein Content-Objekt besitzen und in diesem eine Spezi�kation
vorhanden ist.

Die Überprüfung, ob korrekte, das heiÿt der Tabelle 2.1 entsprechende, Communicative Act-Paare
vorliegen, wird von den drei Constraints Q adjacent to Answ, req adjacent to inf acc rej
und O� adjacent to acc rej Ok besorgt.

Die Eigenschaft Id soll Communicative Acts und Agenten eindeutig identi�zieren, und wird mo-
dellübergreifend auch im Structural UI-Modell verwendet, wo über die Id die Communicative Acts
eingetragen werden, welche spezi�ziert, woher die Daten für ein spezielles Widget kommen. Dies
lieÿe sich durch das �Einsammeln� aller Communicative Acts und Agenten, welche im Diskurs und
sämtlichen insertedDiscourses vorhanden sind, und einem Vergleich unter all diesen bewerkstelli-
gen. Eine schönere Lösung ist allerdings, im ECore-Modell die Eigenschaft Id verp�ichtend und
unique zu machen. Den Agenten, von denen es immer zwei geben muss, werden die Ids A und B
zugewiesen, während Communicative Acts alle anderen Ids besitzen dürfen. Dies wird durch das
Constraint id not empty and A oder B für Agenten überprüft und durch id not empty and
not A and not B für Communicative Acts.

Ein im ECore-Modell als verp�ichtend de�niertes Stringobjekt muss nur vorhanden sein, d.h.
ungleich null sein, wodurch auch ein Leerstring gültig wäre, darum wird überprüft, ob dessen
Länge gröÿer Null ist.

41

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

3.3.2.8 Content

Im Content wird die Aufgabe eines Dialogelements beschrieben und, was mit den Action- und
Domain of Discourse-Modellelementen im Weiteren geschehen soll. Dies geschieht in einer SQL-
ähnlichen Sprache, welche so weit wie möglich an den natürlichen Sprachgebrauch angepasst ist.
Im Content können Action- und Domain of Discourse-Modellobjekte enthalten sein. Der Content
bildet die Schnittstelle zwischen dem User Interface und der Applikationslogik. Ein Content-
Objekt besitzt die folgenden Eigenschaften:

� Speci�cation String
Beschreibt den Content.

� Speci�cation AST String
Darstellung des Content in geparster Form.

Das Content-Objekt besitzt die Specification, welche zur Eingabe dient, und die Specification
AST, welche die geparste Form der Specification anzeigt. Die für den User komfortabelste Lö-
sung wäre, einen eigenen Parser zu schreiben, welcher die Specification auf semantische und
syntaktische Korrektheit prüft, und im Fall eines Fehlers genau dessen Ort und Art angibt. Dies
würde allerdings einen signi�kanten Aufwand bedeuten, da hier für jeden Content zahlreiche Ac-
tion- und Domain of Discourse-Modellelemente geprüft werden müssten.

Ein einfacherer und bedeutend schnellerer Weg ist, die SpecificationAST anhand formaler Para-
meter zu prüfen. Dazu wurde das Constraint verify content objects versus the domain and
action modell in der Klasse ContentCheck.java implementiert.

Dadurch wird im ersten Schritt überprüft ob das Objekt SpecificationAST überhaupt vorhanden
ist und nicht den String �mismatched token� beinhaltet. Die Fehlermeldung �mismatched token�
beschreibt sowohl die Art des Fehlers als auch dessen Position im String. So wird zum Beispiel
�no text� bei der Eingabe von Leerzeichen ausgegeben.

Bei der Eingabe eines Strings kann es vorkommen, dass dieser nur zum Teil geparst werden kann
und dann ein Abbruch erfolgt. In diesem Fall wird die alte Speci�cationAST beibehalten. Dies
stellt allerdings ein Manko des Parsers dar, welcher in absehbarer Zukunft weiterentwickelt wird,
sodass kein Constraint implementiert wurde, um diesen Fehler zu entdecken.

Der zweite Schritt ist die Überprüfung, ob die De�nition der SpecificationAST entweder eine
Instanz der Interfaces IAction oder INotification ist. Wenn dies der Fall ist, darf angenommen
werden, dass der Basisbefehl korrekt geparst werden konnte.

In einem dritten Schritt wird überprüft, ob der Typ des den Content beinhaltenden Commu-

nicative Acts zum Typ der De�nition passt. In der Tabelle 3.2 sind die erlaubten Beziehungen
angegeben.

Im vierten Schritt wird der Typ des Communicative Acts mit der verwendeten Action oder No-
ti�cation aus den Action-Modellen verglichen, da bestimmte Communicative Act-Typen die Ver-
wendung bestimmter Actions oder Noti�cations erfordern. Dabei ist zu beachten, dass diese nicht
notwendigerweise aus dem Modell Basic stammen müssen, allerdings von dessen Actions und
Noti�cations abgeleitet sein müssen. So muss z.B. eine Closed Question die Action select aus
dem Basismodell oder eine Spezialisierung davon im Content haben. Welche Communicative Acts
welche Actions oder Noti�cations aus dem Basismodell bzw. deren Spezialisierungen enthalten
müssen, ist der Tabelle 3.2 zu entnehmen

42

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Communicative Act - Typ Content Typ Basic Action
Informing Noti�cation
ClosedQuestion Action Select
OpenQuestion Action Get oder Update
Accept/Reject Noti�cation
Request Action
O�er Action

Tabelle 3.2: Bedingungen für den Content abhängig vom Communicative Act Typ

3.3.3 Transformationsregelmodell-Constraints

Im Folgenden werden die Modellelement-Klassen von Transformationsregeln betrachtet. Zuerst
werden deren Eigenschaften dargelegt und hinsichtlich notwendiger Überprüfungen evaluiert. An-
schlieÿend werden die Beziehungen eines jeden Elements zu anderen Transformationsregelelemen-
ten hinsichtlich notwendiger Bedingungen für die Modellintegrität betrachtet.

Diese Transformationsregeln werden für die Modell-zu-Modell Transformation von Diskursmo-
dellen zu Structural UI-Modellen verwendet. Sie beschreiben, welche Objektbeziehungen eines
Diskursmodells auf welche Art und Weise im Structural UI-Modell dargestellt werden. Da Regeln
vom User selbst erstellt werden können bzw. für jede Zielplattform erstellt werden müssen, exi-
stieren zahlreiche Regeln, welche angewendet werden können. Des Weiteren ist deren Erstellung
ein schwieriges und detailreiches Unterfangen, welches noch durch den Umstand erschwert wird,
dass zumeist viele Regeln zusammenspielen. Durch eine Überprüfung der Modellintegritätskrite-
rien der Regeln kann zumindest eine formale Korrektheit sichergestellt und die Häu�gkeit von
Fehlern bei der Transformation aufgrund von Fehlern in Structural UI -Modellen, welche durch
fehlerhafte Regeln erzeugt werden, reduziert werden.

Regeln besitzen die folgenden Teile:

� name String
Gibt der Regel einen Namen.

� priority Integer
Gibt die Wichtigkeit der Regel an, wenn entschieden werden muss, welche Regel verwendet
wird, wenn ansonsten gleichwertige Regeln zutre�en.

� source EObject
Gibt das zu transformierende Objekt im Diskursmodell an.

� target EObject
Gibt das Zielobjekt an, welches kreiert oder modi�ziert werden soll.

� space Integer
Space de�niert die Gröÿe eines Elements. Diese wird als Kriterium der Entscheidungs�n-
dung, wo dieses Element schlussendlich dargestellt werden soll, verwendet.

� type RuleType
Gibt den Regeltyp an und bestimmt das grundlegende Verhalten. Eine Regel kann vom Typ
Create, Modify oder Delete sein.

43

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

� ruleSet RuleSet
De�niert die Regelgruppe, der diese Regel angehört.

� discourse Discourse
De�niert ein Muster, welches im Diskursmodell vorhanden sein muss, damit die Regel an-
gewandt wird.

� structuralUI Widget
De�niert das Structural UI-Muster, welches erstellt wird.

� additionalConstraints Constraint Array
Hier können zusätzliche Einschränkungen de�niert werden, welche erfüllt sein müssen, damit
die Regel ausgeführt wird.

� mappings Mapping Array
Setzt bestimmte Diskurselemente und Structural UI -Elemente in Beziehung.

Jede Regel benötigt ein Source- und ein Target-Objekt, welche de�nieren, von welchem
Diskursmodell-Objekt ausgehend welches Objekt im Structural UI -Modell bearbeitet wird. De-
ren Vorhandensein, wird im ECore-Modell durch die Eigenschaft Lowerbound 1 eingestellt. Durch
Upperbound 1 wird erreicht, dass genau ein Objekt vorhanden ist.

Eine Regel besitzt des Weiteren ein Source-Pattern in der Form eines Diskursmodells, welches das
Muster enthält, nach welchem im Diskursmodell gesucht werden soll, und ein Target-Pattern in der
Form eines Structural UI -Modells, welches das Muster enthält, welches im Structural UI -Modell
erstellt werden soll.

Im Source-Pattern vorkommende Adjacency Pairs können Communicative Acts besitzen. Wie im
Diskursmodell sind nur solche Communicative Act-Kombinationen erlaubt, welche in Tabelle 2.1
aufgelistet sind. Da diese Diskursmodelle nur Muster darstellen, nach welchen gesucht werden soll,
ist hier nicht zwingend gefordert, dass diese komplett vorhanden sein müssen. Auch ein Adjacency

Pair mit nur einem Communicative Act stellt ein gültiges Muster dar, welches gesucht werden
kann. Deshalb sind diese Constraints, check openquestion answer, check closedquestion
answer, check o�er request - accept reject, check informing und check question answer
als Warnings ausgeführt.

Source- und Target-Objekte müssen sich in den Source- und Target-Patterns be�nden, was
durch das Constraint source und target in rule sichergestellt wird. Dazu werden die beiden
Muster rekursiv durchgegangen und jedes Element der Modelle mit Source oder Target vergli-
chen.

Dieselbe Vorgehensweise wird auf Mappings im Constraint mapping only on elements of rule
angewandt. Mappings besitzen auch Source- und Target-Objekt, die in den Mustern vorhanden
sein müssen.

Die Widgets aus dem Structural UI -Muster können wie alle Widgets die Eigenschaft traces-

To de�niert haben. Diese beschreibt, für welches Element des Diskursmodelles das Widget im
Structural UI-Modell erzeugt wurde. Im Fall einer Regel müssen diese TracesTo-Objekte auf
Elemente des Diskursmusters dieser Regel verweisen. Dazu wird im Constraint traces to ca/rel
in rule zuerst das Teil Structural UI-Modell nach tracesTo durchsucht und im Erfolgsfall das
gesamte Diskursmodellmuster nach dem Objekt, auf welches tracesTo verweist.

44

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Im Folgenden werden die Constraints zur Überprüfung von häu�g vorkommenden Mustern in
Regeln beschrieben. Diese müssen im Allgemeinen erfüllt sein, wenn der Agent des Opening Com-
municative Acts die Applikation ist. Es gibt allerdings Sonderfälle, sodass diese Constraints als
Warnings ausgeführt sind.

� check openquestion answer
Ein Open Question - Answer Paar sollte ein InputWidget bzw. eine Spezialisierung davon
und einen Button mit der Answer im Event Feld erzeugen.

� check closedquestion answer
Ein Closed Question - Answer Paar sollte ein Listwidget und einen Button, welcher die
Answer im Event Feld enthält, erzeugen.

� check o�er request - accept reject
Ein Request oder O�er, welches Accept oder Reject besitzt, sollte einen Button mit diesem
Accept und einen Button mit diesem Reject im Event Feld erzeugen.

� check question answer
Ein Adjacency Pair mit einem Question-Answer Paar sollte ein InputWidget bzw. eine
Spezialisierung davon mit dem Event der Antwort erzeugen.

� check informing
Ein Informing sollte keine InputWidgets bzw. Spezialisierungen davon erzeugen und sollte
zumindest ein OutputWidget bzw. eine Spezialisierung davon erzeugen.

3.3.4 Structural UI Constraints

Im Folgenden werden die Modellelement-Klassen eines Structural UI -Modells betrachtet. Zuerst
werden deren Eigenschaften dargelegt, welche anschlieÿend hinsichtlich notwendiger Überprüfun-
gen evaluiert werden. Dann werden die Beziehungen eines jeden Elements zu anderen Structural

UI -Elementen hinsichtlich notwendiger Bedingungen für die Modellintegrität betrachtet.

Das Structural UI -Modell ist das Ergebnis einer Modell-zu-Modell-Transformation eines Diskurs-
modelles zu einem Structural UI -Modell unter Berücksichtigung einer Auswahl von Transforma-
tionsregeln. Es kann dabei vorkommen, dass zahlreiche einfache Regeln auf ein einzelnes Model-
lelement wirken. Dies stellt einerseits einen Faktor der Mächtigkeit des UCP-Frameworks dar,
da hier durch die Kombination einfacher und nachvollziehbarer Regeln komplexe E�ekte erreicht
werden können, andererseits stellt es eine immanente Fehlerquelle dar. Derartige Fehler können
auf mannigfaltige und unvorhersehbare Weise eine Codegenerierung unmöglich bzw. fehlerhaft
machen.

Structural UI -Modelle basieren auf Widgets, welche folgende Eigenschaften haben.

� name EString
Gibt dem Widget einen Namen.

� visible EBoolean
Gibt an, ob dieses Widget sichtbar ist.

� enabled EBoolean
Gibt an, ob dieses Widget verwendet wird.

45

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

� contentSpeci�cation EString
Dieses Feld wird während dem ersten Transformationsschritt (Diskursmodell zu Structural

UI -Modell) ausgewertet. Hier kann eine OCL-Expression angegeben werden, die auf das
Content-Objekt des Communicative Acts, auf welchen das tracesTo-Feld verweist, angewen-
det wird. Dieses Objekt ist gegebenenfalls im Domain of Discourse-Modell spezi�ziert.

� content EObject
Im Fall, dass eine OCL-Expression im contentSpeci�cation-Feld enthalten ist, enthält die-
ses Feld das Attribut des Content-Objekts, das von diesem Widget repräsentiert werden
soll. Dieses Feld enthält ebenfalls einen Teil des Resultats der Auswertung der OCL-
Expression aus dem ersten Transformationsschritt und ist für den zweiten Transformati-
onsschritt (Structural UI -Modell zu User Interface-Quellcode) von Bedeutung.

� contentReference EReference
Im Fall, dass die OCL-Expression im contentSpeci�cation-Feld eine Referenz au�öst, wird
in diesem Feld der Name der Referenz eingetragen. Dieses Feld enthält einen Teil des Re-
sultats der OCL-Expression-Auswertung aus dem ersten Transformationsschritt und ist für
den zweiten Transformationsschritt (Structural UI -Modell zu User Interface-Quellcode) von
Bedeutung.

� text EString
Enthält statischen Text oder eine Formattierungsvorgabe für das Widget.

� width EInt
De�niert die Breite des Widgets.

� height EInt
De�niert die Höhe des Widgets.

Des Weiteren können Widgets die folgenden Elemente beinhalten:

� style Style
Gibt den zu verwendenden Style an.

� tracesTo EObject
Verweist auf ein Element des Diskursmodelles.

� layoutData LayoutData
Enthält Daten zur Darstellung dieses Widgets.

� parent Panel
De�niert das Panel, welches dieses Widget enthält.

Von dieser Klasse Widget werden dann die Klassen InputWidget, OutputWidget und Pa-
nel abgeleitet, welche wiederum zahlreiche Spezialisierungen besitzen.

Um sicherzustellen, dass aus einem Structural UI -Modell ein User Interface generiert werden
kann, muss es einigen formalen Regeln genügen, welche in den Stuctural UI -Modell Constraints
implementiert sind. Es ist hier ausreichend, die Spezialisierungen der abstrakten Klasse Widget

46

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

auf Modellintegritätskriteriumskonformheit zu überprüfen. In den Layout-Klassen sind Werte spe-
zi�ziert, welche, sofern sie vorhanden sind, das Aussehen bestimmen. Für den Fall, dass ein Lay-

out-Wert nicht angegeben ist, wird dieser bei der Codegenerierung berechnet, näheres dazu �ndet
sich in [Lei10].

Ein Structural UI -Modell stellt einen auf Widgets basierenden Baum dar, welcher auf einem
Choice-Widget basiert und dessen zweiter Level nur aus Frames bestehen darf. Die Integrität
dieser Topologie wird durch die beiden Constraints �rst level must be choice und second
level must be frame sichergestellt.

Die vier Parameter content, contentReference, contentSpecification und text spezi�zie-
ren die Aufgabe eines Widgets. TracesTo gibt an, auf welches Objekt des Diskursmodells dieses
Widget verweist. Dazu müssen bzw. dürfen allerdings nicht alle gesetzt sein, sondern es sind nur
spezielle Kombinationen davon zulässig, wie in Tabelle 3.3 dargestellt. Um dies sicherzustellen,
wird durch das Constraint check structural UI elements ein jedes Widget auf das Vorhanden-
sein eines gültigen Musters überprüft. Die Tabelleneinträge bedeuten dabei folgendes:

� Ja
Element muss vorhanden sein.

� Nein
Element darf nicht vorhanden sein.

� X
Es ist egal, ob dieses Element vorhanden ist.

� Self
Feld muss einen Basisdatentyp enthalten.

� Formatter
Element muss Formatierungsinformation enthalten.

Besondere Relevanz hat, dass eine gesetzte contentReference immer ein Datum in einem con-

tent-Feld verlangt. Durch die allgemeine Gültigkeit dieser Einschränkung und den Umstand,
dass sich dieses Framework weiterentwickelt und die de�nierten Muster ihre Gültigkeit auch ver-
lieren können und dadurch abgeschaltet bzw. angepasst werden müssen, wurde hierfür ein eigenes
Constraint contentReference set implies content set erstellt, obwohl dieses eine Modellele-
mentbeziehung überprüft, welche auch durch das zuvor genannte Constraint überprüft ist.

InputWidgets und OutputWidgets stellen konkrete Spezialisierungen der Klasse Widget

dar und werden als solche bei der Transformation eines Diskursmodells in ein Structural UI -
Modell verwendet. Sie dienen bei der Transformation Basisregeln als zwischenzeitliche Platzhalter
und werden später durch speziellere Transformationsregeln in weitere Spezialisierungen von In-

putWidgets und OutputWidgets umgewandelt. Schlägt diese Umwandlung fehl oder wurde
vergessen, eine derartige Transformationsregel zu implementieren, kann es vorkommen, dass sich
ein InputWidget oder ein OutputWidget im Structural UI -Modell be�ndet. Da aus diesen
kein Code generiert werden kann, werden sie durch das Constraint no input/output Widgets
aufgezeigt.

Es liegt auf der Hand, dass durch jede Eingabe des Benutzers eine Aktion im Programm aus-
gelöst werden muss. Diese wird im Structural UI -Modell durch ein Event-Objekt repräsentiert

47

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Tabelle 3.3: Gültige Widget-Muster

und ein jedes InputWidget muss ein solches besitzen. Da dieses im Structural UI -Muster der
Transformationsregeln im Allgemeinen nicht vorhanden ist, schlieÿt sich hier eine Realisierung
dieses Constraints durch einen entsprechenden Eintrag im ECore-Modell aus und wurde in in-
put widget must have event realisiert. Hier sei nochmals auf den Umstand verwiesen, dass
ECore-Modell-Constraints immer überprüft werden, und auch in den Preferences nicht abgeschal-
tet werden können. Da in den Transformationsregeln Structural UI -Elemente verwendet werden,
würden diese auch in den Transformationsregeln hinsichtlich der Erfüllung ihrer Modellintegri-
tätskriterien geprüft werden.

Einen Sonderfall stellt die Klasse ListWidget dar, da sich dieses sowohl von der Klasse Input-
Widget als auch von Klasse Panel ableitet. Es wird zum Einen als Liste, aus welcher ein oder
mehrere Einträge ausgewählt werden können, verwendet. Zum Anderen kann es auch ein Panel
darstellen. Auf diese Weise kann mit ListWidgets z.B. eine Liste von Produkticons, von denen
eines durch Klicken ausgewählt und verarbeitet wird, realisiert werden, aber auch eine Liste von
Checkboxen, deren Auswahl mit einem Button abgeschickt wird. Welche Darstellungsform verwen-
det wird, hängt vom Typ des Communicative Acts ab, aus welchem das Listwidget kreiert wird.
So soll zur Darstellung eines Informing mit mehreren Werten eine Liste erstellt werden, während
aus einer Closed Question eine Auswahl aus einer Liste und eine Möglichkeit, diese abzusenden,
vorgesehen wird.

Die Darstellungsform wird durch die Eigenschaft renderingType festgelegt, welcher die Werte
LIST, PANEL und FOLDOUT annehmen kann. Je nach Verwendungsform sind andere Parameter
erforderlich. Als Panel muss es ein InputWidget besitzen, was durch list panel must have
input widget überprüft wird. Als Liste muss ihm ein Event zugeordnet sein, durch list must
have event except panel überprüft und darf nur eine Spalte besitzen, welche in der Eigenschaft
colNumber festgelegt und durch das Constraint list panel must have input widget überprüft
wird.

48

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

3.4 Evaluierung der Modellprüfung

Eine Meta-Prüfung, d.h. eine Überprüfung der Constraints, welche die Modelle prüfen, erfolgte
auf den Modellen bestehender Applikationen. Diese sollten als funktionierende Projekte keine
Fehler bei der Modellintegritätsprüfung erzeugen. In den Fällen, wo dies doch passierte, wurden
die Fehler überprüft und deren Ursache ermittelt. Anschlieÿend wurde das Constraint, welches
den Fehler ausgelöst hat, an Sonderfälle angepasst oder das Modell richtig gestellt.

Falsch positive Ergebnisse, d.h. wenn durch die Modellprüfung ein Error entdeckt wird, obwohl
kein Fehler vorhanden ist, stellen ein schwerwiegendes Problem dar. Dies kann zum Einen da-
zu führen, dass Zeit auf die �Fehlerbehebung� verwendet wird, obwohl das Modell korrekt ist.
Zum Anderen kann durch die �Fehlerbehebung� bzw. Workarounds das Modell komplizierter und
schwerer verständlich werden. Allerdings würde eine vollständige Meta-Prüfung der implemen-
tierten Constraints die Prüfung aller möglichen gültigen Kombinationen von Modellelementen
erfordern, was Aufgrund der hohen Anzahl nicht möglich ist.

Auf der anderen Seite stehen falsch negative Ergebnisse, wenn also die Überprüfung einen Fehler
�übersieht�. Dies muss nicht notwendigerweise zu einem Absturz des Programmes führen, es kann
auch in der falschen Darstellung im UI resultieren oder gar nicht bemerkbar sein. Eine vollständige
Meta-Prüfung durchzuführen ist hier nicht möglich, da dazu alle möglichen Objektkombinationen
hinsichtlich ihrer Gültigkeit evaluiert werden müssten. Es können allerdings Modelle kreiert wer-
den, welche bestimmte Fehler enthalten. Wenn diese durch die Modellintegritätskriteriumsprüfung
gefunden werden, kann das korrekte Erkennen von Fehlern in einem gewissen Umfang angenom-
men werden.

Vom Online Shop Beispiel wurden für jede Gruppe von Constraints Modelle abgeleitet und in diese
den Constraints entsprechende Fehler eingebaut, welche dann durch eine Modellintegritätsprüfung
gefunden wurden. Damit kann ein grundlegendes Funktionieren der implementierten Constraints

angenommen werden, wobei allerdings nicht alle möglichen Fälle abgedeckt werden.

Für die Evaluierung wurden sechs bestehende Modelle verwendet:

� Online Shop

� Verhandlungsunterstützung

� Flightbooking

� Commrob-Kassa

� Commrob-Roboter

� Bike Rental

Die ersten fünf Modelle wurden bereits zu User Interfaces gerendert. Deren Kommunikationsmo-
delle, Regelmodelle und Structural UI -Modelle wurden überprüft.

Das Kommunikationsmodell Bike Rental stellt einen ersten Entwurf eines Kommunikationsmodells
durch zwei erfahrene Benutzer dar. Dieses wurde ohne die Modellprüfung zu benutzen erstellt und
wurde noch nicht in ein User Interface gerendert. An diesem Modell lässt sich sehen, welche Fehler
selbst erfahrenen Benutzern machen und wie diese durch die Modellprüfung unterstützt werden
können.

49

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

3.4.1 Evaluierung bereits gerenderter Modelle

Dies folgenden fünf Modelle wurden bereits zu User Interfaces gerendert, daher sollten diese Mo-
delle keine Fehler enthalten. Damit aus diesen Modellen User Interfaces generiert werden konnten,
wurden in diesen Modellen bereits Fehler behoben. Deren Kommunikationsmodelle, Regelmodelle
und Structural UI -Modelle wurden überprüft.

� Online Shop

� Verhandlungsunterstützung

� Flightbooking

� Commrob-Kassa

� Commrob-Roboter

Kommunikationsmodelle
Die Modellprüfung hat die folgenden Errors und Warnings aufgezeigt:

� 1× vergessene Attribute und Parameter in Content-Objekten
Es wurde ein fehlerhaftes Content-Objekt aufgezeigt, welches richtig gestellt wurde.

� 1× Verwendung falscher Link -Typen
Dies ist durch die Änderung von Anforderungen an Modelle bzw. die Änderung der Software
zu erklären.

� 1× Alternative ohne Agent
Durch eine Änderung des UCP-Frameworks wurde das neue Konzept der Mixed Initiative

eingeführt, sodass die Relation Alternative keinen Agent mehr benötigt. Das Modell
wurde an die neue Gegebenheit angepasst.

� 13× Inserted Sequences ohne Action- und Domain of Discourse-Modelle
Durch eine Änderung des UCP-Frameworks müssen Inserted Sequences jetzt alle für sie rele-
vanten Action- und Domain of Discourse-Modelle eingetragen haben. Durch eine Änderung
des entsprechenden Constraints wird diesem Umstand entsprochen.

Structural UI-Modelle
Die Prüfung ergab folgende Errors und Warnings:

� 11× Style Name nicht unique
Das style heading-Objekt war im Metamodell als unique und id de�niert. Diese Eigen-
schaften wurden auf false gesetzt, da dies nicht den Anforderungen entspricht.

� 1× Radiobutton-Eigenschaft selected nicht gesetzt
Die verp�ichtende Eigenschaft selected von Radiobuttons in Kombination mit dem Fehlen
eines default values war Ursache dieses Fehlers. Er konnte durch den Eintrag eines default
values im Metamodell behoben werden.

50

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

� 1× Adjacency Pair mit den Communicative Acts Closed Question und Answer kreierte kein
List-Widget.
Ein Communicative Act-Answer kreierte kein List-Widget. Durch eine spezielle Regel wurde
jedoch eine andere Darstellung einer Liste erzeugt.

� 3× Do_not_render -Regeln kreieren keine Widgets
Do_not_render -Regeln sind für Spezialfälle gescha�en worden, in welchen keine Widgets
erzeugt werden dürfen.

� 3× Output Widget im Structural UI -Modell
Nach einer Transformation in ein Structural UI -Modell dürfen sich keine Output Widgets

mehr in diesem be�nden. Es sind nur Spezialisierungen der KlasseOutputWidget erlaubt.
Deren Vorhandensein zeigt einen Fehler bei der Transformation auf und lässt darauf schlie-
ÿen, dass eine Regel im zweiten Transformationsschritt nicht angewandt wurde, wodurch ein
Target-Objekt nicht korrekt erstellt wurde.

� 2× Listwidget ohne Input Widget

Wenn wie in diesen beiden Fällen ein List-Widget lediglich zur Darstellung einer Liste und
nicht zur Auswahl aus einer solchen verwendet wird, dann ist das Nichtvorhandensein eines
Input-Widgets korrekt.

� 21× TracesTo verweist auf kein Objekt oder ein falsches Objekt
Dies zeigt einen Fehler bei der Transformation auf und lässt darauf schlieÿen, dass eine
Regel angewandt wurde, allerdings beim Au�ösen der Referenzen auf das Diskursmodell ein
Fehler passiert ist. Zum Teil ist dies durch eine Änderung des UCP-Frameworks zu erklären,
da sich durch die Einführung eines des Screen Models eine neue Top-Level -Struktur von
Structural UI -Modellen ergibt. Dieses Screen Model wird automatisch erstellt und seine
Objekte verweisen nicht auf Diskursmodell-Objekte. Daher wurde das Constraint geändert,
welches überprüft, ob jedes TracesTo-Objekt im Diskursmodell enthalten ist und es liefert
nun keinen Error mehr sondern eine Warning.

Regelmodelle
Es besteht die Möglichkeit neben den allgemeinen Transformationsregeln auch spezielle Transfor-
mationsregeln zu verwenden, welche für ein bestimmtes Kommunikationsmodell erstellt wurden.
Fehler in Transformationsregeln müssen nicht zwangsläu�g zu fehlerhaften Structural UI -Modellen
führen, da nicht alle angewendet werden, siehe Kapitel 2.2.2.2. Eine Prüfung der allgemeinen
Transformationsregeln und der speziellen Transformationsregeln, sofern welche vorhanden waren,
ergab folgende Errors und Warnings:

� 33× keine Namen für Constraints in Second-Level -Regeln
Namen sind optionale Eigenschaften, daher sind diese Modellintegritätsverletzungen ledig-
lich Warnings. Den betro�enen Regeln wurde ein Name zur besseren Verständlichkeit gege-
ben.

� 1× kein Mapping-Source-Objekt
Fehlende Mapping-Source-Objekte sind schwerwiegende Fehler, daher wurde diese Regel
richtig gestellt.

� 2× kein Mapping-Target-Objekt
Fehlende Mapping-Target-Objekte sind schwerwiegende Fehler, daher wurde diese Regel
richtig gestellt.

51

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

� 2× Mapping-Source-Objekt oder Mapping-Target-Objekt nicht Teil des Source-
Diskursmusters oder Target-Structural UI -Musters
Eine Regel darf nur Beziehungen zwischen Diskursmodellobjekten und Structural UI -
Modellobjekten herstellen, welche in ihren Diskurs- und Structural UI -Mustern angegeben
sind. Daher wurden diese Fehler richtiggestellt.

3.4.2 Evaluierung des Bike Rental Kommunikationsmodells

Das Kommunikationsmodell Bike Rental stellt einen ersten Entwurf eines Kommunikationsmodells
durch zwei erfahrene Benutzer dar. Dieses wurde ohne die Modellprüfung zu benutzen erstellt und
wurde noch nicht in ein User Interface gerendert. An diesem Modell lässt sich sehen, welche Fehler
selbst erfahrenen Benutzern machen und wie diese durch die Modellprüfung unterstützt werden
können. Ein Ausschnitt des Bike Rental-Diskursmodells ist in Abbildung 3.5 dargestellt. Bei der
Modellprüfung ergaben sich folgende Errors:

Abbildung 3.5: Ausschnitt aus dem Diskursmodell Bike Rental

� 2× Opening Communicative Act Request hat keinen entsprechenden Closing Communicative
Act. Erlaubte Kombinationen sind in Tabelle 2.1 angegeben.

� 1× Conditon, siehe Abbildung 3.5, hat weder Then- noch Else-Zweig, besitzt aber einen
Tree-Zweig.

� 4× Eine Action oder eine Noti�cation be�ndet sich nicht in den Action-Modellen oder wurde
nicht vom Basic-Modell abgeleitet. Ein Beispiel dafür ist die Action selectRentalTerminal

in der ClosedQuestion(rentBike9), welche sich nicht im Action-Modell bikeRental be�n-
det.

52

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

� 4× Open Question hat kein get oder update im Content. Dies ist zum Beispiel bei der
Action getUserData in der OpenQuestion(rentBike1) der Fall, da diese nicht von der
Basic-Modell Action get abgeleitet wurde.

� 4× Es traten Fehler in Content-Objekten auf, welche in diesem Ausschnitt des Bike Rental
Diskurses nicht ersichtlich sind.

� 1× IfUntil hat keinen Agent. Dieser Fehler be�ndet sich in einem anderen Teil des Diskurs-
modells.

� 1× Zwei Root-Nodes be�nden sich in einem Diskurs. Diese sind das obere IfUntil und die
Sequence.

� 3× Conditon eines Then-Links ist leer. Dies ist zum Beispiel beim oberen IfUntil der Fall.

� 1× Then-Link hat kein Child -Objekt. Dieser Fehler ist im graphischen Diskursedtior nicht
ersichtlich.

� 1× Tree-Link be�ndet sich nicht an einem IfUntil. Dies ist der Tree-Link an der Condition.

Bei der Modellprüfung ergaben sich folgende Warnings:

� 30× Es wurde kein Name für ein Modellobjekt vergeben. Der Name ist nicht zu verwechseln
mit der Id eines Modellobjektes, welche durch runde Klammern gekennzeichnet ist.

� 4× Die Eigenschaft Goal eines Diskurses oder einer inserted Sequence enthält einen Leer-
string.

� 4× Es wurde eine mögliche Endlosschleife gefunden. Dies könnte zum Beispiel im unteren
IfUntil der Fall sein, da dieses keinen Then-Link besitzt.

� 5× Es wurde in einem Tree-Link keine Wiederholungsbedingung de�niert.

3.4.3 Ergebnisse der Evaluierung

Die Errors undWarnings aus allen Modellen sind in Abbildung 3.6 zusammengefasst. Hierbei wur-
den nur Überprüfungsergebnisse beachtet, welche tatsächlich Modellfehler darstellen und Über-
prüfungsergebnisse, welche zu einer Änderung von Constraints führten oder durch Änderungen
des Frameworks bedingt sind vernachlässigt.

Die gröÿte Fehlergruppe bilden mit 34,8% die Fehler im Structural UI -Modell in den TracesTo-
Objekten. Diese entstehen ähnlich wie die Fehlergruppe der nicht aufgelösten Widgets (6,5%) bei
der Transformation eines Diskursmodelles zu einem Structural UI -Modell, wenn eine Regel nicht
oder nicht korrekt ausgeführt wird. Damit machen Transformationsfehler 41,3% der gesamten
Fehler aus. Leider lässt sich nach der Transformation nicht mehr sagen, welche Regeln zu einem
konkreten Structural UI -Modellobjekt geführt haben. Hier wäre es wünschenswert, mehr Mög-
lichkeiten zur Fehlerbehandlung und Fehlersuche zur Verfügung zu haben, um nicht auf Logging-
oder Debugergebnisse angewiesen zu sein. Es wäre hier zum Beispiel vorstellbar, in jedem Struc-

tural UI -Objekt zu speichern, welche Regel dieses kreiert bzw. modi�ziert hat. Damit würde ein
einfacheres Nachvollziehen der Transformation möglich sein.

53

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Abbildung 3.6: Evaluierungsergebnisse

Die zweitgröÿte Fehlergruppe bilden mit 19,6% die Fehler in Content-Objekten. Diese sind ver-
wandt mit den Fehlern im Action-Modell mit 8,7%. Durch die Prüfung werden allerdings nur
strukturelle Fehler im Content erkannt, sodass die tatsächliche Fehleranzahl noch höher liegen
kann.

Die drittgröÿte Fehlerguppe sind mit 10,9% Mapping-Fehler in Regeln. Diese können zu fehlerhaf-
ten Structural UI -Widgets führen, wenn diese Regel verwendet wird. Die nicht aufgelösten Input-
oder Output-Widgets können so entstanden sein.

Diskursmodellfehler sind Fehler, welche bei der Diskursmodellerstellung passiert sind. Obwohl es
schwerwiegende Fehler sind, können sie rasch behoben werden, da die Modellprüfung die fehler-
haften Modellelemente angibt. Damit sind 47,8% aller Fehler im Diskursmodell entdeckt worden.

Die Gruppe der Warnings wird mit 85,1% angeführt von der nicht vorhandenen Benennung von
Modellobjekten. Dies ist der De�nition eines Goals (4,6%), d.h. eines Ziels, welches durch einen
Diskurs erreicht werden soll, ähnlich. Obwohl diese keine kritischen Fehler darstellen, so sind die
Vergabe guter Namen und die De�nition von Diskurszielen der Verständlichkeit eines Modells sehr
zuträglich.

Die restlichen Warnings sind durch Links bedingt. Zum Einen werden mögliche �Endlosschleifen�
(4,6%) aufgezeigt, welche in den vorliegenden Modellen durchaus gewollt sind. Zum Anderen
wurde in Tree-Links keine Bedingung angegeben (4,6%).

3.4.4 Interpretation der Ergebnisse

Es können fehlerhafte Diskursmodelle modelliert werden, da der Diskurseditor die Modellierung
von nicht transformierbaren Objekten und Objektstrukturen erlaubt, aus welchen kein Structural

UI -Modell erstellt werden kann. Wenn die Modellprüfung keinen Fehler liefert und ein Diskurs
dennoch nicht transformiert werden kann, so be�nden sich die Fehler mit hoher Wahrscheinlichkeit
in den Link -Bedingungen oder in den Content-Objekten, welche durch diese Modellprüfung nur
ober�ächlich auf das Vorhandensein bestimmter Strukturen geprüft werden.

54

Realisierung von Modellintegritätsprüfungen für das UCP-Framework

Ohne Modellprüfung könnten sich Input- und Output-Widgets im Structural UI -Modell be�nden,
welche nicht dargestellt werden können. TracesTo-Objekte könnten nicht aufgelöst worden sein,
wodurch Widgets auf falsche Elemente des Diskursmodells zeigen. Falsch eingetragene Target-
Objekte können dadurch entstehen, dass Regeln nicht angewendet wurden.

Diese entdeckten Fehler können dazu führen, dass das generierte User Interface Fehler enthält,
oder ein Structural UI -Modell nicht zu einem User Interface gerendert werden kann. Durch die
Modellprüfung werden häu�g vorkommende Modellfehler erkannt und die Modellobjekte auf das
Vorhandensein einer gewissen Struktur hin geprüft. Eine Fehlerfreiheit kann allerdings nicht si-
chergestellt werden.

Alle Structural UI -Modelle, welche bereits gerendert werden konnten, passierten die Modellprü-
fung. Es wurden zwar einige Errors und Warnings ausgeben, allerdings sind diese durch die Än-
derung des UCP-Frameworks zu erklären. Die entsprechenden Constraints wurden an die neuen
Gegebenheiten angepasst. Es ist zu beachten, dass diese Modelle von Personen erstellt wurden,
welche mit dem UCP-Framework vertraut sind. Durch das Rendern und dem Vergleich mit dem
intendierten Ergebnis wurden bereits viele Modellfehler behoben.

Im Zuge der Evaluierung und der Meta-Prüfung der Modelle habe ich selbst einige Modelle erstellt.
Obwohl ich mit den Regeln vertraut bin, sind mir doch wesentlich mehr Fehler relativ zur Anzahl
der modellierten Elemente unterlaufen, als im Bike Rental -Modell vorgefunden wurden. Daraus
schlieÿe ich, dass die Modellierung zu einem gewissen Teil auf Erfahrungswerten beruht und denke,
dass Anfänger noch in viel stärkerem Ausmaÿ von der Modellprüfung pro�tieren können.

Zur Fehlersuche muss nun nicht jedes mal eine komplette Transformation der Modelle vorgenom-
men werden. Die Modellprüfung stellt ein Werkzeug dar, um Copy-Paste-Fehler zu �nden.

Das Vorhandensein dieser Modellprüfung hat die Entwickler motiviert, eine automatisierte Mo-
dellprüfung vor der Transformation zu implementieren, welche als neue Funktionalität ins UCP-
Framework integriert wurde.

Es wurden ca. drei Fehler pro Modell entdeckt, wobei dies sehr häu�g Fehler in Links waren.
Eine Umwandlung der entsprechenden Batch-Constraints in Live-Constraints und damit deren
Prüfung zur Laufzeit wäre eine Möglichkeit, diese Fehler sofort bei der Diskursmodellerstellung
abzufangen.

Die Weiterentwicklung des UCP-Frameworks führte dazu, dass einige Constraints angepasst wer-
den mussten. Da Inserted Sequences nun Action- und Domain of Discourse-Modelle haben müssen,
wurde das Constraint, welches zuvor deren Vorhandensein verbat, zu einer Überprüfung, ob diese
beiden Modelle de�niert sind.

Das Konzept der Mixed Initiative wurde eingeführt, welches erlaubt, dass in der Relation
Alternative nun beide Agenten Entscheidungen tre�en dürfen, während diese zuvor einen Agen-
ten zugeordnet haben mussten.

Als gute Vorgehensweise emp�ehlt es sich, dass parallel zur Erstellung in gewissen Zeitabständen
Modellprüfungen durchgeführt werden. Dadurch ist eine ständige Anpassung und eine frühzeitige
Erkennung von Fehlern möglich, sodass Folgefehler vermieden werden können und schlussendlich
weniger Korrektur nötig ist.

55

4 Zusammenfassung und Ausblick

Es folgen eine Zusammenfassung dieser Arbeit und ein Ausblick auf mögliche Weiterentwicklungen.

4.1 Zusammenfassung

Der Zweck des UCP-Frameworks ist eine automatische Generierung eines User Interfaces aus
einem Kommunikationsmodell. Dies geschieht durch einen zweistu�gen Prozess, wobei ein Struc-

tural UI -Modell als Zwischenergebnis dient, aus welchem User Interfaces generiert werden können.
Die Transformation eines Kommunikationsmodells in ein Structural UI -Modell wird anhand von
Transformationsregeln durchgeführt.

Damit ein schnelleres Au�nden von Fehlern in diesen Modellen möglich wird, wurden die Meta-
modelle von Diskursmodellen, Structural UI -Modellen und Transformationsregeln um Modellin-
tegritätskriterien erweitert, welche Einschränkungen darstellen, was in diesen Modellen modelliert
werden kann.

Mit Hilfe des Validation Frameworks von EMF können diese Modelle auf die Einhaltung ihrer
Modellintegritätskriterien hin geprüft und das Resultat dem Benutzer angezeigt werden. Das EMF

Validation Framework wurde zur Implementierung gewählt, da dieses die Infrastruktur für eine
Modellprüfung bietet und mit dem UCP-Framework, welches auf Basis des EMF implementiert
wurde, gut zusammenarbeitet.

Die Implementierung der Modellintegritätskriterien erfolgte als Constraints im Validation Frame-

work. Dabei wurden zur Implementierung die Sprachen OCL und Java gewählt. Zum Einen wurde
OCL benutzt, da sich damit schnell einfache Objektbeziehungen und Wertebereiche von Objek-
teigenschaften überprüfen lassen. Zum Anderen wurde Java verwendet, um komplexe Constraints
zu implementieren, welche auÿerhalb des Sprachumfangs von OCL liegen. Durch das Validati-

on Framework werden Modelle auch hinsichtlich der Erfüllung der Modellde�nitionen, welche in
den Metamodellen beschrieben werden, geprüft. Dadurch konnten auch durch die Anpassung der
Metamodelle zu überprüfende Modellintegritätskriterien implementiert werden.

Diese Constraints sind Teil eines Validation-Adapters, welcher für die Modellintegritätsprüfung
zuständig ist. Es wurde für Diskursmodelle, Structural UI -Modelle und Transformationsregeln
ein eigener Validation-Adapter erstellt, in welchen die die benötigten Constraints implementiert
wurden. Diese Adapter wurden mit dem UCP-Framework getestet und in dieses integriert.

Dadurch besteht nun im UCP-Framework die Möglichkeit, Diskursmodelle, Structural UI -Modelle
und Transformationsregeln auf Modellintegritätskonformheit zu prüfen.

56

Zusammenfassung und Ausblick

4.2 Ausblick

Diese Überprüfung soll nun dazu führen, dass korrekte Modelle rascher erstellt werden können
und damit ein schnelleres Erstellen eines User Interfaces bzw. einer Applikation möglich wird.

Je mehr man modelliert, desto mehr Punkte entdeckt man, an denen noch weitere Verfeinerun-
gen der Metamodelle vorgenommen werden könnten. Auch wenn von der Implementierung von
zahlreichen möglichen weiteren Warnungen Abstand genommen wurde, da diese in ihrer Masse
kaum mehr wahrgenommen würden, haben sich einige Punkte gezeigt, an denen eine sinnvolle
Weiterentwicklung möglich wäre.

Eine Modellintegritätsprüfung im graphischen Editor und ein Markieren fehlerhafter Elemente
darin, würde gemeinsam mit der Umwandlung geeigneter Constraints in Live-Constraints die
Modellierung sinnvoll unterstützen.

Eine Überprüfung der Conditions und RepeatConditions von Links, ob diese korrekt geparst wer-
den konnten und eine Überprüfung des Kommunikationsablaufs, ob alle Variablen, welche für diese
Conditions benötigt werden, einen Wert zugewiesen bekommen haben, stellt eine weitere mögliche
Weiterentwicklung dar.

Gewisse Modellelemente benötigen gewisse Kombinationen von Modellelementen. So müssen zum
Beispiel in den Unterzweigen eines Joint alle Opening Communicative Acts denselben Agenten
besitzen, damit dieser Kommunikationsablauf in einem Fenster dargestellt werden kann. Dazu
muss allerdings noch evaluiert werden, welche Relationen derartiges verlangen, wie die erlaub-
ten Muster aussehen und welche Modellelemente hier sinnvoll in Verbindung gebracht werden
müssen. Generell könnte man alle möglichen Kombinationen von Modellelementen untersuchen,
ob diese erlaubt bzw. sinnvoll sind. Dies hätte allerdings den Rahmen dieser Arbeit bei Weitem
überschritten.

Bei der Entwicklung der Regel-Constraints hat sich gezeigt, dass diese sowohl vereinfacht als auch
enger de�niert werden könnten. In der jetzigen Form sind diese an grobe Muster gebunden. Diese
gehen von heuristischen Annahmen über erwartete und sinnvolle Muster an Adjacency Pairs aus.
Es könnten hier weitere Einschränkungen de�niert werden, welche Elemente was erzeugen. Da das
UCP-Framework allerdings weiterentwickelt wird, ist zum jetzigen Zeitpunkt noch nicht ersicht-
lich, wie dies genau aussehen werden. Die in der vorliegenden Arbeit entwickelten Constraints

bieten einen Rahmen, um die häu�gsten Fehler zu entdecken.

57

A Constraints

Im Folgenden eine Au�istung der implementierten Constraints.

Die Error Nummer identi�ziert jedes Constraint eindeutig und ist gleich dem Status Code. Wobei
die ersten beiden Zi�ern die Gruppe angeben, zu welcher dieses Constraint gehört und die letzten
beiden Zi�ern die Constraints dieser Gruppe durchnummerieren.

Dann folgen der Constraint-Name und darunter die durch dieses Constraint ausgegebene Fehler-
meldung. In der Fehlermeldung bedeutete {0}, dass an dieser Stelle das fehlerhafte Modellobjekt
ausgegeben wird.

In der Spalte lang �ndet sich die Art des Constraints. Dies kann entweder OCL, Java oder ECore
sein.

Unter Target sind die Modellobjekte, auf denen dieses Constraint ausgeführt wird, aufgelistet.

Wenn es sich um ein OCL-Constraint handelt, �ndet sich in der letzten Spalte der OCL-Code.
Im Fall eines Java-Constraints ist die Klasse angegeben, in welcher dieses implementiert wurde.
Sollte es sich um ein ECore-Constraint handeln, bleibt diese Spalte frei.

58

errornr name and error message lang target oclcode or java class
category Discourse Constraints
01xx warnings
0101 name not empty ocl SenderAgent name.size() > 0

{0} has no name Node
CommunicativeAct
Discourse

0102 goal not empty ocl Discourse self.goal -> size() > 0
{0} has no goal

0103 tree has empty repeat condition ocl IfUntil self.children -> select(type = LinkType::TREE) ->
{0} can be an endless loop forAll(l:Link|

 if (l.repeatCondition.size()=0).oclIsInvalid()
 then false
 else l.repeatCondition.size()>0
 endif)

0104 else needs a then ocl IfUntil self.children -> select(type = LinkType::ELSE) -> size() > 0 implies
{0} has else without then self.children -> select(type = LinkType::THEN) -> size() > 0

0105 result 1 n ocl Result (self.children -> forAll(l:Link|l.type = LinkType::NUCLEUS or l.type = LinkType::SATELLITE))
{0} has no satellite and (self.children -> select(l:Link|l.type = LinkType::NUCLEUS) -> size() = 1)

and (self.children -> select(l:Link|l.type = LinkType::SATELLITE) -> size() = 0)
02xx Adjacency Pairs
0201 AP must have an opening act ocl AdjacencyPair self.openingCommunicativeAct -> size() = 1

{0} has no opening communicative Act
0202 check closing CA ocl AdjacencyPair (self.closingCommunicativeActs -> size() = 0) implies

{0} has no closing CA or opening CA is not Informing (self.openingCommunicativeAct.oclIsTypeOf(Informing))
0203 diffrent opening and closing CA - Agent ocl AdjacencyPair if (self.openingCommunicativeAct.oclIsTypeOf(Informing).not())

{0} same opening and closing agent forAll(belongsTo <> self.openingCommunicativeAct.belongsTo)
 then self.closingCommunicativeActs ->
 else true
endif

03xx Communicative Acts
0301 CA must have an agent ocl CommunicativeAct self.belongsTo -> size() = 1

{0} has no agent
0302 check content not empty ocl CommunicativeAct if (self.content.specification.size() > 0).oclIsInvalid()

{0} has no valid content then (self.oclIsTypeOf(Accept) or self.oclIsTypeOf(Answer)
 or self.oclIsTypeOf(Ok) or self.oclIsTypeOf(Reject))
 else self.content.specification.size() > 0 endif

0303 opening xor closing ocl CommunicativeAct (self.closingCommunicativeActParent -> size() = 1)
{0} must be openingCA xor closingCA xor (self.openingCommunicativeActParent -> size() = 1)

59

04xx Links
0401 then must hava a condition ocl Link self.type = LinkType::THEN implies

then must hava a condition if (self.condition.size() > 0).oclIsInvalid()
then false else self.condition.size() > 0 endif

0402 then, else parent ifuntil or condition ocl Link (type = LinkType::THEN or type = LinkType::ELSE) implies
{0} has no parent of type ifuntil or condition (parent.oclIsTypeOf(IfUntil) or parent.oclIsTypeOf(Condition))

0403 tree parent ifuntil ocl link (type = LinkType::TREE) implies (parent.oclIsTypeOf(IfUntil))
 {0} has no parent of type ifuntil

0404 parent child set ocl Link (self.parent -> size() = 1) and (self.child -> size() = 1)
{0} hasnt parent and child

0405 in tree condition must not be set ocl Link if (type = LinkType::TREE)
{0} tree must have repeat conditon but no condition then

 if (condition.oclIsInvalid())
 then true
 else condition.size()=0
 endif
else true
endif

05xx adjacent Communicative Acts
0501 openingCA of type cQ oQ Req Off Inf ocl AdjacencyPair self.openingCommunicativeAct.oclIsKindOf(Question) or

{0} - openingCA not of type cQ oQ Req Off Inf self.openingCommunicativeAct.oclIsTypeOf(Request) or
self.openingCommunicativeAct.oclIsTypeOf(Offer) or
self.openingCommunicativeAct.oclIsTypeOf(Informing)

0502 closingCA of type Answ Acc Rej ok ocl AdjacencyPair closingCommunicativeActs ->
{0} - closingCA not of type Answ Acc Rej ok forAll(oclIsTypeOf(Answer) or oclIsTypeOf(Accept)

 or oclIsTypeOf(Reject) or oclIsTypeOf(Ok))
0503 Q adjacent to Answ ocl AdjacencyPair self.openingCommunicativeAct.oclIsKindOf(Question) implies

{0} - Question not adjacent to Answer self.closingCommunicativeActs -> forAll(oclIsTypeOf(Answer))
0504 req adjacent to inf acc rej ocl AdjacencyPair self.openingCommunicativeAct.oclIsTypeOf(Request) implies

{0} - request not adjacent to acc rej Ok (self.closingCommunicativeActs -> forAll(oclIsTypeOf(Ok)
or oclIsTypeOf(Accept) or oclIsTypeOf(Reject)))

0505 Off adjacent to acc rej Ok ocl AdjacencyPair self.openingCommunicativeAct.oclIsTypeOf(Offer) implies
{0} - Offer not adjacent to Accept or Reject or Ok (self.closingCommunicativeActs ->

forAll(oclIsTypeOf(Accept) or oclIsTypeOf(Reject) or oclIsTypeOf(Ok)))
06xx Relations
0601 sequence ordered ocl Sequence self.children -> forAll(l1, l2|l1 <> l2 implies l1.condition <> l2.condition)

{0} is not properly ordered
0602 ifuntil 1 tree 0..1 then 0..1 else ocl IfUntil (self.children -> forAll(l|l.type = LinkType::TREE

{0} hasnt 1 tree and 0..1 then 0..1 else or l.type = LinkType::THEN or l.type = LinkType::ELSE))

60

and (self.children -> select(type = LinkType::TREE) -> size() = 1)
and (self.children -> select(type = LinkType::THEN) -> size() < 2)
and (self.children -> select(type = LinkType::ELSE) -> size() < 2)

0603 Condition 1 then 1 else ocl Condition (self.children -> forAll(l|l.type = LinkType::THEN or l.type = LinkType::ELSE))
{0} hasnt 1 then and 1 else and (self.children -> select(type = LinkType::THEN) -> size() = 1)

and (self.children -> select(type = LinkType::ELSE) -> size() = 1)
0604 RSTSingleNucleusRelation 1 n 1 s ocl Background (self.children -> forAll(l:Link|l.type = LinkType::NUCLEUS or l.type = LinkType::SATELLITE))

{0} hasnt 1 nucleus and 1 satellite Elaboration and (self.children -> select(l:Link|l.type = LinkType::NUCLEUS) -> size() = 1)
Annotation and (self.children -> select(l:Link|l.type = LinkType::SATELLITE) -> size() = 1)
Title

0605 MultiNucleusRelation and Sequence 2..* n ocl Joint (self.children -> forAll(l|l.type = LinkType::NUCLEUS))
{0} hasnt 2..* N Contrast and (self.children -> size() > 1)

Alternative
Sequence

0606 some relations need an agent ocl Elaboration agent.oclIsUndefined().not() or self.oclIsTypeOf(Annotation)
{0} has no agent defined IfUntil or self.oclIsTypeOf(Background)

Alternative
Condition

0607 result 1 n s=2..* ocl Result (self.children -> forAll(l:Link|l.type = LinkType::NUCLEUS or l.type = LinkType::SATELLITE))
{0} has more than 1 Satellite and (self.children -> select(l:Link|l.type = LinkType::NUCLEUS) -> size() = 1)

and (self.children -> select(l:Link|l.type = LinkType::SATELLITE) -> size() > 1)

07xx Discourse
0701 verify content objects versus the domain and action modelljava org.ontoucp.discourse.validation.adapter.constraints.ContentCheck
0703 check AM, DM, Agent, Roots java org.ontoucp.discourse.validation.adapter.constraints.CheckDiscourse
0704 check for loops java org.ontoucp.discourse.validation.adapter.constraints.ModelStructure

08xx Ids ids
0802 id not empty and A oder B ocl SenderAgent id = 'A' or id = 'B'

{0} id must be A or B
0801 id not empty and not A and not B ocl CA id.size() > 0 and id <> 'A' and id <> 'B'

{0} id may not be empty and not "A" or "B"
0803 id unique ecore SenderAgent

CA
Structural UI - Constraints

2001 check structural UI elements ocl InputWidget (
{0} does not apply to a valid pattern OutputWidget content -> size() = 0 and

contentReference -> size() = 0 and
if contentSpecification -> size() = 0

61

 then true else contentSpecification -> forAll(size() = 0) endif and
if text = null then false else text.size() > 0 endif and
tracesTo -> size() = 1
) or (
content -> size() = 1 and
contentReference -> size() = 0 and
if contentSpecification -> size() = 0
 then false else contentSpecification -> forAll(size() > 0) endif and
if text = null then true else text.size() = 0 endif and
tracesTo -> size() = 1
) or (
content -> size() = 1 and
contentReference -> size() = 1 and
if text = null then true else text.size() = 0 endif and
tracesTo -> size() = 1
) or (
content -> size() = 0 and
contentReference -> size() = 0 and
if contentSpecification -> size() = 0
 then false else contentSpecification -> forAll(size() > 0) endif and
if text = null then true else text.size() = 0 endif and
tracesTo -> size() = 1
) or (
content -> size() = 0 and
contentReference -> size() = 0 and
if contentSpecification -> size() = 0
 then false else contentSpecification -> forAll(size() > 0) endif and
if text = null then false else text.size() > 0 endif and
tracesTo -> size() = 1
)

2002 first level must be choice ocl Widget self.parent = null implies self.oclIsTypeOf(Choice)
first level object isnt Choice

2003 second level must be frame ocl Choice self.parent = null implies self.widgets -> forAll(oclIsTypeOf(Frame))
second level object isnt Frame

2004 input widget must have event ocl Button event -> size() > 0
{0} has no event ComboBox

DateTimePicker
TextBox
ImageMap

62

TextField
2005 colNumber = 1 except for renderingType Panel ocl ListWidget colNumber = 1 or renderingType = ListRenderingType::PANEL

{0}: colNumber != 1 or renderingType not panel
2006 list must have event except panel ocl ListWidget (self.event -> size() > 0) or renderingType = ListRenderingType::PANEL

{0}: has no event or renderingType not panel
2007 list panel must have input widget ocl ListWidget renderingType = ListRenderingType::PANEL

{0} has no input widget implies (widgets -> select(oclIsKindOf(InputWidget)) -> size() > 0)
2008 if contentReference set implies contetn set ocl Widget (contentReference -> size() > 0) implies (content -> size() > 0)

{0} has no content
2009 no input / output widgets ocl InputWidget self.oclIsTypeOf(InputWidget).not() and

{0}: just spezialiciations of input or output widgets allowed here OutputWidget self.oclIsTypeOf(OutputWidget).not()
2010 tracesTo ca or node Java Widget org.ontoucp.structuralui.validation.adapter.constraints.checkTracesToCA.java

{0} doesnt trace to element of disourse model
Rules Constraints

3001 mapping soure and target not empty ecore Mapping
3002 traces to ca/rel in rule Java Rule

doesnt trace to ca/rel in rule org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.checkTracesTo.java
3003 mapping only on elements of rule Java Rule

{0} maps on a element not in discourse or structuralUI org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.checkMapping.java
3004 source and target not empty ecore Rule
3101 check openquestion answer Java Rule org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_OQ_A.java
3102 check closedquestion answer Java Rule org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_CQ_A.java
3103 check offer request - accept reject Java Rule org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_OR_AR.java
3104 check informing Java Rule org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_INF.java
3105 check question answer Java Rule org.ontoucp.discourse.model2ui.rendering.validation.adapter.constraints.check_Q_A.java

63

B Diskursmodell-Online Shop

Es folgt das Diskursmodell des Online Shop Beispiels aus Kapitel 2.2.3.

64

Diskursmodell-Online Shop

Abbildung B.1: Diskursmodell Online Shop - Teil 1

65

Diskursmodell-Online Shop

Abbildung B.2: Diskursmodell Online Shop - Teil 2

66

Abbildungsverzeichnis

2.1 Diskurs-Metamodell . 5

2.2 RST-Relationen und prozedurale Relationen . 7

2.3 Communicative Act Taxonomie . 9

2.4 Der UCP-Transformationsprozess . 12

2.5 Structural UI-Metamodell . 13

2.6 Transformationsregel-Metamodell . 14

2.7 Domain of Discourse-Modell Shop . 16

2.8 Regel für eine Closed Question . 17

2.9 Structural UI - Ergebnis aus Closed Question . 17

2.10 Online Shop - Auswahl der Produktkategorie [Ran08] 18

2.11 Online Shop - Produktauswahl [Ran08] . 18

2.12 Online Shop - Eingabe der Kundendaten [Ran08] 19

2.13 EMF Modell Generierung [7] . 21

3.1 Extension Point - Constraint Bindings . 30

3.2 Extension Point - Constraint Provider . 31

3.3 validate()-Methode . 33

3.4 Zyklus aus Relationen . 35

3.5 Ausschnitt aus dem Diskursmodell Bike Rental . 52

3.6 Evaluierungsergebnisse . 54

B.1 Diskursmodell Online Shop - Teil 1 . 65

B.2 Diskursmodell Online Shop - Teil 2 . 66

67

Tabellenverzeichnis

2.1 Beziehungen zwischen Communicative Acts [BEF+10] 10

2.2 Wahrheitstabellen - dreiwertige Logik (0:false 1:true ?:unde�ned) [Son03] 23

3.1 Links für Relationen und prozedurale Relationen 38

3.2 Bedingungen für den Content abhängig vom Communicative Act Typ 43

3.3 Gültige Widget-Muster . 48

68

Internet Referenzen

[1] Matteo Risoldi Recipe: How To use the Eclipse Validation Framework with OCL constraints

de�ned in a separate �ler http://wiki.eclipse.org/EMF/Validation/Recipes.

[2] Enabling OCL property check in EMF's generated editor http://smv.unige.ch/members/

risoldi/otherdocs/ocl-emf.

[3] Validation Rule Implementation https://teambruegge.informatik.tu-muenchen.de/

groups/unicase/wiki/10947/Validation_Rule_Implementation.html.

[4] EMF - Eclipse Modelling Framework http://www.eclipse.org/modeling/emf/.

[5] Eclipse documentation - EMF Validation Framework Overview EMF Validation Framework
Developer Guide >Programmer's Guide >Validation Framework Overview http://help.

eclipse.org/galileo/index.jsp.

[6] Lars Vogel Eclipse Modeling Framework (EMF) - Tutorial http://www.vogella.de/

articles/EclipseEMF/article.html. 2010

[7] Assembla K-Made Documentation Emf http://www.assembla.com/wiki/show/Kmade/

Documentation_emf

[8] Wikipedia Design by Contract http://de.wikipedia.org/wiki/Design_by_contract.

69

http://wiki.eclipse.org/EMF/Validation/Recipes
http://smv.unige.ch/members/risoldi/otherdocs/ocl-emf
http://smv.unige.ch/members/risoldi/otherdocs/ocl-emf
https://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/10947/Validation_Rule_Implementation.html
https://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/10947/Validation_Rule_Implementation.html
http://www.eclipse.org/modeling/emf/
http://help.eclipse.org/galileo/index.jsp
http://help.eclipse.org/galileo/index.jsp
http://www.vogella.de/articles/EclipseEMF/article.html
http://www.vogella.de/articles/EclipseEMF/article.html
http://www.assembla.com/wiki/show/Kmade/Documentation_emf
http://www.assembla.com/wiki/show/Kmade/Documentation_emf
http://de.wikipedia.org/wiki/Design_by_contract

Wissenschaftliche Literatur

[BEF+10] C. Bogdan, D. Ertl, J. Falb, A. Green, S. Kavaldjian, D. Raneburger, and A. Szép.
Report on development of dialogue design support features. Report, page 26, 2010.

[BFK+08] Cristian Bogdan, Jürgen Falb, Hermann Kaindl, Sevan Kavaldjian, Roman Popp, Hel-
mut Horacek, Edin Arnautovic, and Alexander Szep. Generating an abstract user
interface from a discourse model inspired by human communication. In Proceedings

of the 41st Annual Hawaii International Conference on System Sciences (HICSS-41),
Piscataway, NJ, USA, January 2008. IEEE Computer Society Press.

[FGOG07] Lorenz Froihofer, Gerhard Glos, Johannes Osrael, and Karl M. Goeschka. 29th inter-
national conference on software engineering (icse'07). In Overview and Evaluation of

Constraint Validation Approaches in Java, 2007.

[HS08] Manfred Hennig and Heiko Seeberger. Einführung in den Extension Point - Mecha-
nismus von Eclipse. Javaspektrum, 1, 2008.

[KFK09] Sevan Kavaldjian, Jürgen Falb, and Hermann Kaindl. Generating content presentation
according to purpose. In Proceedings of the 2009 IEEE International Conference on

Systems, Man and Cybernetics (SMC2009), San Antonio, TX, USA, Oct. 2009.

[KKHH04] Hermann Kaindl, Stefan Kramer, Mario Hailing, and Vahan Harput. Interactive
metamodel-compliance checking of requirements in a semiformal representation. In
Managing Complexity and Change! - INCOSE 2004 - 14th Annual International Sym-

posium Proceedings, 2004.

[KRR+10] S. Kavaldjian, D. Raneburger, R.Popp, M. Leitner, J. Falb, and H. Kaindl. Automated
optimization of user interfaces for screens with limited resolution. In Proceedings of the
MDDAUI'10 Workshop on Model Driven Development of Advanced User Interfaces,
2010.

[Lei10] Michael Leitner. Space-saving placement using a structural user interface model. Ma-
ster's thesis, TU Vienna, 2010. Master Thesis, TU Vienna.

[LFG90] Paul Lu�, David Frohlich, and Nigel Gilbert. Computers and Conversation. Academic
Press, London, UK, January 1990.

[MT88] W. C. Mann and S.A. Thompson. Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243�281, 1988.

70

WISSENSCHAFTLICHE LITERATUR WISSENSCHAFTLICHE LITERATUR

[OMG06] Object Management Group. Object constraint language omg available speci�cation
version 2.0, 2006.

[Ran08] David Raneburger. Automated graphical user interface generation based on an ab-
stract user interface speci�cation. Master's thesis, TU Vienna, 2008.

[Sea69] J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, England, 1969.

[Son03] Runqiu Song. Einführung in die Object-Contraint-Language OCL, 2003.

71

	Titlepage
	Einleitung
	Basis der Arbeit
	Diskursmodellierung
	UCP-Framework
	Kommunikationsmodell
	GUI-Generierung
	Beispiel - Shop

	Modellintegritätskriteriumsprüfung
	ECore
	OCL
	Java Constraints
	Validation Framework

	Realisierung von Modellintegritätsprüfungen für das UCP-Framework
	Konzepte und Strategien
	Validation Framework
	Implementierung des Validation Framework
	Validation-Plugins

	Implementierung der Constraints
	Implementierungs-Strategien
	Diskursmodell-Constraints
	Transformationsregelmodell-Constraints
	Structural UI Constraints

	Evaluierung der Modellprüfung
	Evaluierung bereits gerenderter Modelle
	Evaluierung des Bike Rental Kommunikationsmodells
	Ergebnisse der Evaluierung
	Interpretation der Ergebnisse

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Constraints
	Diskursmodell-Online Shop
	Wissenschaftliche Literatur

