
DIPLOMARBEIT

Space-saving Placement
Using a Structural User Interface Model

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
und

Proj.Ass. Dipl.-Ing. Dr.techn. Jürgen Falb
als verantwortlich mitwirkendem Assistenten am

Institutsnummer: 384
Institut für Computertechnik

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Michael Leitner
Matr.Nr. 9926617

Löwenherzgasse 9 Tür 8, 1030 Wien

23.05.2010

Kurzfassung

Im Zuge der automatischen Erstellung von Graphical User Interfaces (GUIs) durch die Unified
Communication Platform (UCP) kommt es zu einem Zwischenschritt, bei dem ein abstrak-
tes Modell des GUIs erstellt wird – das structural User Interface (structural UI) Modell.
Dieses beinhaltet Informationen über den strukturellen Aufbau und den Inhalt des GUIs,
die einzelnen Anzeigeelemente haben jedoch zunächst noch keine zugewiesene Größe und
keine Layoutdaten. Diese Daten müssen nachträglich berechnet und an eine vorgegebene
Bildschirmgröße angepasst werden. Um diese Aufgabe zu erfüllen, wurde im Rahmen dieser
Diplomarbeit das Layout Module entwickelt. Es berechnet die erforderlichen Größen und
Layout Daten und liefert ein an die vordefinierte Bildschirmgröße angepasstes structural UI
Modell zurück. In weiterer Folge kann dieses structural UI Modell in Java Code transformiert
werden. Die Berechnung der Layoutdaten wird durch die Einführung eines Rasters mit ein-
heitlicher Zellgröße ermöglicht. Die benötigten Zeilen und Spalten pro Anzeigeelement wer-
den berechenbar und mögliche Einfügepunkte können gefunden werden. Im Falle mehrerer
möglicher Einfügepunkte werden Kriterien wie resultierende Platzverschwendung, Bildschir-
mgröße oder Proportion für die Entscheidungsfindung herangezogen. Ästhetik spielt dabei
noch eine untergeordnete Rolle, kann aber in Form einer Optimierung bei der Entscheidungs-
findung einbezogen werden, sofern die Komplexität des structural UI Modelles dies zulässt.

Abstract

During the automatic generation of graphical user interfaces (GUIs) using the Unified Com-
munication Platform, it comes to an intermediate step where an abstract GUI model is created
– the structural user interface (structural UI) model. This model contains information about
the structure and the content of the GUI, but size and layout data are not set in advance.
Considering a predefined target device’s screen size, these data have to be computed after-
wards. To fulfil this task, the Layout Module was created within the scope of this master
thesis. It calculates the required size and layout data and returns a structural UI model
that is tailored to the predefined target device’s screen size. Afterwards, this structural UI
model can be transformed to Java code. An introduced grid with equally sized cells allows
the computation of the required layout data. Rows and columns required by each widget can
be computed and possible insertion points can be found. In case of several possible insertion
points for a single widget, decisions are made considering the resulting wasted space, screen
size and proportion. Currently, aesthetics play a minor part for these decisions but can be
subject for optimisations if the complexity of the structural UI model allows it.

Acknowledgements

”Immer einen Schritt nach dem Anderen...

...und nicht aufgeben. Hörst du?”

Das waren die Worte meiner Mutter, wenn es mal nicht so wollte mit der Studiererei. Und
ich bin froh, dass sie sie mir diese Einstellung vermittelt hat. Es zählt nicht immer nur die
Zeit, die man für etwas benötigt. Manchmal ist es einfach wichtiger, dass man die Geduld
und den Willen hat etwas zu einem Ende zu bringen. Egal wie lange es dauert. Am Beginn
meines Studiums der Elektrotechnik wusste ich nicht so genau, worauf ich mich da einlasse.
Aber letztendlich ich habe das Gefühl, dass es eine gute Wahl war.

Vielen Personen in meinem Umfeld gebührt Dank. Personen, ohne deren Hilfe ich wohl jetzt
nicht am Wiener Donaukanal sitzen und nach Worten suchen würde, um mich bei Ihnen zu
bedanken. Allen voran möchte ich mich bei meinem Vater und meiner Mutter bedanken, die
wohl eine ganze Menge an Geduld und Geld aufbringen mussten, um mich zu einem Abschluss
zu begleiten. Danke, dass ihr immer an mich geglaubt habt. Aber auch meinem Bruder,
meiner Schwester und ihrem Mann möchte ich für ihre Ratschläge und Motivationskünste
danke sagen. Und nicht zu vergessen, meiner kleinen Nichte und meinem kleinen Neffen, die
es immer wieder schaffen mir ein Lächeln ins Gesicht zu zaubern. Auch Dir ein Dankeschön,
Susi, schön dass du da bist. Ich freu mich schon auf unseren Besuch in München. Danke dass
ich Euch alle hab. Ich glaub ihr wisst, wie gern ich euch hab.

Jemanden, der sicher auch für mich das ein oder andere Gebet gesprochen hat, möchte ich
hier auch erwähnen. Pater Anton Ringseisen, danke für Deine Freundschaft.

Herzlich bedanken möchte ich mich bei dieser Gelegenheit auch bei Univ.Prof. Dipl.-Ing.
Dr.techn. Hermann Kaindl und Proj.Ass. Dipl.-Ing. Dr.techn. Jürgen Falb für die engagierte
Betreuung. Danke auch an Euch, Roman Popp und Sevan Kavaldjian, für Eure Hilfsbere-
itschaft und Cafe bzw. Mittagessgesellschaft. Und Dir, David, ein großes Dankeschön für
deine fast 24-Stunden Service-Line. Es hat Spaß gemacht mit Euch zusammenzuarbeiten.

Was wäre so ein Studium ohne die richtigen Freunde und Innen? Danke, dass ich meine Zeit
mit Euch verbringen darf und auf Euch zählen kann, wenn es mal wo hakt. Da eigentlich
alle meine Kollegen ja im Laufe der Zeit auch zu guten Freunden geworden sind, seid Ihr ja
in den vorigen Sätzen auch gemeint.

Zu guter Letzt, Steffi, das letzte Jahr mit Dir war super. Ich hoffe auf Weitere. Und auf eine
tolle Reise.

Widmen möchte ich diese Arbeit meiner Mutter, die leider seit fast schon drei Jahren nicht
mehr auf dieser Welt ist. Gerne hätte ich Dein Gesicht gesehen, wenn ich Dir mein Diplom
gezeigt hätte. Ich hoffe, Du machst dir jetzt keine Sorgen mehr um mich. Ich hab Dich lieb
und Du fehlst mir. Danke für Alles.

Michi

Contents

1 Introduction 1

2 State of the Art 3
2.1 User Interface Design . 4

2.1.1 Aesthetic Characteristics . 4
2.1.2 Mathematical Relationships . 8

2.2 Placement Strategies . 10
2.2.1 Two-Column Based Strategy . 10
2.2.2 Right/Bottom Strategy . 12
2.2.3 Shape- and Size-Analysis Based Strategy 13

3 UCP – Unified Communication Platform 16
3.1 Discourse Model . 17
3.2 Structural User Interface Model . 18

3.2.1 Widget Class . 19
3.2.2 LayoutManager Class . 25
3.2.3 The Structural UI Tree . 27

3.3 Cascading Style Sheets . 28
3.4 Discourse Model to Structural UI Model Transformation Process 28

4 Layout Module 32
4.1 Integrated Size Calculation and Layouting Algorithm 33
4.2 Integration of the Layout Module . 36
4.3 StyleSheetConverter . 37
4.4 Size Calculation . 39

4.4.1 Size Calculation for InputWidgets and OutputWidgets 39
4.4.2 Size Calculation for Panels . 41

4.5 Layout Algorithm . 42
4.5.1 The Grid . 45
4.5.2 Insertion Points . 47
4.5.3 Choice of the Insertion Point . 51

4.6 Calculation of the LayoutData . 54
4.7 Results of Using the Layout Module . 56

5 Conclusion 63

I

Abbreviations and Acronyms

CSS Cascading Style Sheet

DPI Dots Per Inch

FWL Flexible Widget Layout

GUI Graphical User Interface

ICT Institute of Computer Technology

LA Layout Appropriateness

PC Personal Computer

PDA Personal Digital Assistant

UCP Unified Communication Platform

UI User Interface

URL Uniform Resource Locator

Chapter 1

Introduction

Automatic generation of GUIs (Graphical User Interfaces) is a promising topic. Research
started in the early 1980s and is still subject of current projects. The main concern is to
make the generation of GUIs transparent to the designer in order to save time. Since time is
closely linked to money and manually programming GUIs is a time consuming task, automatic
GUI-generation would spare a lot of money.

The UCP (Unified Communication Platform) represents an approach that allows automatic
generation of GUIs for multiple target devices (e.g. PC monitor, PDA, touch screen, etc.).
The UCP has been developed by the Institute of Computer Technology (ICT) at the Vienna
University of Technology. The UCP permits designers, even with limited programming skills,
to create GUIs by modeling the interaction between two communication parties. A discourse
model acts as basic model and is an abstract representation of the interaction between the two
communication parties. This discourse model is transformed into a structural UI (structural
User Interface) model, which is an abstract representation of the GUI and contains informa-
tion about the contained widgets (”Windows + Gadget”) and their hierarchy. Within this
model-to-model transformation process, the widgets’ size and layout attributes need to be
set automatically. This is required to display the contained widgets properly on the target
device’s screen, in a non-overlapping manner. Furthermore, these size and layout attributes
are necessary to calculate the size of each screen that is contained by a certain GUI. This
information allows to check if the GUI fits into the used target device’s screen size.

The goal of this master thesis was to automatically create a layout for any structural UI model
generated by the UCP. Therefore, the Layout Module has been implemented to calculate size
and layout-data (see Chapter 4). The Layout Module tries to create a layout that fits into a
predefined target device’s screen size while simultaneously presenting a maximum amount of
information.

The widgets’ size is generally obtained from a Cascading Style Sheet. For certain widgets, it
is required to calculate size, or to obtain size from an alternative source. For example, the
size of container widgets (e.g. panels) must be calculated considering the collocation and size
of their contained widgets. The width of some other widgets (e.g. label, button, etc.) has to
be set to a default value. This is required because the text to be displayed is not available in
the course of the size and layout calculation.

The Layout Module’s placement strategy tries to arrange the widgets within their container in
a space-saving manner. After each placement, the entire unused space remains available for a

1

Chapter 1 Introduction

further placement. The next widget to be placed is inserted at a position that leads towards
a minimum amount of wasted space. Therefore, the functionality of the GridBagLayout-
Manager provided by Java is used. In order to make placement decisions computable, the
grid-cells are set to a defined width and height for each container. The size of the single
widgets defines the number of grid-cells they occupy in the grid. After each widget insertion,
an image of the current container is created. This image – the grid – is implemented as a
two-dimensional integer array that provides information about the current state of each grid-
cell (e.g. occupied, free, forbidden, etc.). Based on this grid, it is possible to search possible
insertion points and to compare them in terms of space consumption.

The text at hand starts with a short description of aesthetic characteristics and mathemat-
ical relationships in Chapter 2. These characteristics and relationships can help to make
decisions where to place widgets in a pleasing manner. Furthermore several existing place-
ment strategies are presented. Chapter 3 outlines basic information on the UCP framework,
which is needed to comprehend the functionality of the Layout Module. It starts with a
short description of the discourse model and the structural UI model. The model-to-model
transformation that generates the structural UI model completes the chapter. In Chapter
4, the functionality and implementation of the Layout Module are outlined. The calculation
of a widget’s size and the layout algorithm are described in detail and some examples are
given to illustrate possible outcomes that can be achieved with the aid of the Layout Module.
Finally, some suggestions for an optimisation of the Layout Module are given in Section 5.

2

Chapter 2

State of the Art

Projects that aim to automatically generate graphical user interfaces can follow different
approaches. Task descriptions or aesthetic characteristics can be either considered or not,
and the models that are used to describe the users’ tasks and to describe the structure of the
graphical user interface (GUI) may differ in their level of abstraction. To give an overview,
some of these approaches are listed below:

• SUPPLE represents a dynamic approach for automatic GUI generation for multiple
target devices [GW04]. It considers the users’ tasks and tries to minimize the estimated
effort to perform these tasks. Furthermore, it generates GUIs that are tailored to the
user’s motor and vision capabilities (SUPPLE++) [GLW06, GWW07].

• AESTHER generates GUIs for the handheld device domain [YK09]. It rather consid-
ers aesthetic principles than task-description when creating the layout for an applica-
tion.

• FWL (Flexible Widget Layout) generates GUIs that conform to the user’s pref-
erences [YNK09]. The user can assign desirabilities to widgets that have the same
functionality but differ in their size (e.g. ListBox and DropDownListBox, Spinner and
Slider, etc.). If the target device provides enough space, the preferred widgets are used.

• LA (Layout Appropriateness) represents an approach that generates layouts that
are optimised according to a simple description of the tasks that can performed by a
user [Sea93]. This simple task-description contains a description of each sequence of
actions performed by a user, together with the frequency of the task’s occurrence. A
LA-optimal layout can be computed accordingly. Furthermore, a LA-value can be cal-
culated for existing GUIs according to a corresponding simple task-description, allowing
a comparison of different layouts for the same application in terms of the user’s task
performance.

However, all of these GUI generating approaches have one major problem in common. Each
of them comes to a point, where the single widgets have to be placed on the screen. A
placement strategy is required.

Bodart et al. state that any placement strategy has to answer the following three questions
for each widget-placement [BHLV94]:

3

Chapter 2 State of the Art

• Localization: Where should the widget be placed on the screen?

• Dimensioning: How large should the widget be placed on the screen?

• Arrangement: According to which order should the widget be placed on the screen?

In their paper, two placement-strategies are presented. A two-column based and a dynamic
right/bottom strategy. Kim et al. present a placement strategy that arranges widgets with
the aid of a decision-tree according to their shape and size [KF93].

This chapter starts with a short description of aspects that a placement strategy may consider
in terms of user interface design (see Section 2.1). In Section 2.2 the three placement-strategies
that were mentioned above are described in more detail.

2.1 User Interface Design

The current section outlines some principles of user interface design. In case of manually
arranging the widgets, these principles can be satisfied as desired. If the layout has to be
created automatically, the principles can be used to make decisions where to place the different
widgets. However, it must be noted that these principles do not consider any content. They
just propose a possible arrangement of widgets, and provide information about the visual
appearance of a UI.

The section starts with a description of a set of aesthetic characteristic measures in 2.1.1.
Moreover, several mathematical relationships that can help to improve practicability, appli-
cability and workability are outlined in 2.1.2.

2.1.1 Aesthetic Characteristics

Various studies have been made concerning the appearance of user interface widgets (screen
elements) on a screen. Vanderdonckt et al. describe a set of visual techniques how widgets
should be arranged [VG94]. Depending on the involved widgets, these techniques can be
difficult to apply. Ngo et al. state that an aesthetically well designed UI reasonably influences
the UI’s usability and its acceptability [NTB03]. Furthermore, they say that aesthetic UIs
greatly increase learnability, comrehensability and productivity.

In order to measure the aesthetics of a collocation of widgets on a screen, they elaborated
mathematical formulae for a set of characteristics, and present the methods that allow a
computation of a measure for each characteristic. Altogether, they elaborated fourteen aes-
thetic characteristic measures, which are summarized in the following paragraphs. Detailed
information about the computation of these characteristics can be found in the the paper
[NTB03].

Assigning a constant weight to each measured characteristic to indicate its importance, an
overall aesthetic measure can be computed. This can be achieved by calculating the weighted
arithmetical average of the different computed characteristic results. With the aid of this
overall measure, an existing UI can be evaluated. Furthermore, different UIs can be compared
and rated in terms of their aesthetic appearance.

4

Chapter 2 State of the Art

Aesthetic Measure of Screen Balance

The balance of a screen depends on the distribution of optical weight within the screen. The
human eye senses each widget with a different weight. This weight depends on different
factors that let some widgets appear heavier than others. For example, large widgets appear
visually heavier than little ones. Color is visually heavier than shades of gray, black is heavier
than white and irregularly shaped widgets appear heavier than regularly shaped ones do.

To be aesthetically balanced, the widgets of a screen must be arranged in the following way:

• Horizontally balanced: The top of the screen and its bottom must be equally
weighted.

• Vertically balanced: The left and the right side of the screen must be equally
weighted.

A screen’s weight is computed considering its widgets’ sizes and the distance from these
widgets’ centre-line to the respective centre-line of the screen (vertical or horizontal). Color
as well as shape of the widgets is not considered here. At each side of the screen’s centre lines
(top, bottom, left and right), the weights are summarized and a total weight is computed for
these parts of the screen. The difference between the left and the right total weight divided
by their maximum results in the vertical balance. The difference between the top and the
bottom total weight divided by their maximum results in the horizontal balance. Balance
can finally be calculated depending on the horizontal and vertical balance.

Aesthetic Measure of Screen Equilibrium

In comparison to balance, which considers the visual weight, equilibrium considers the visual
centre. It is a measure of the centre deviation of a collocation of widgets. If the centre of a
collocation of widgets coincides with the screen’s centre, perfect equilibrium is achieved. In
this case, the screen is in a state of repose. Otherwise, there occurs a contradiction between
the two different centers. The measure of equilibrium depends on the arithmetical average of
the vertical and horizontal equilibrium.

Aesthetic Measure of Screen Symmetry

Symmetry is defined as axial duplication – a widget that appears on one side of a centre line
is equivalently replicated on the other side. Perfect symmetry automatically causes balance,
but balance does not necessarily cause symmetry. Concerning symmetry, a screen can be
characterized by its deviation of vertical, horizontal and radial symmetry:

• Vertical symmetry states that the left and the right side of a screen consist of equiv-
alent widgets and are arranged the same way.

• Horizontal symmetry states that the top and the bottom of the screen consist of
equivalent widgets and are arranged the same way.

• In case of two or more axes, radial symmetry states that the partitioned areas consist
of equivalent widgets and are arranged the same way.

5

Chapter 2 State of the Art

A possibly existing deviation of the three itemized symmetries can be computed for each
screen. The arithmetical average of these three deviations defines the measure of a screen’s
symmetry.

Aesthetic Measure of Screen Sequence

The measure of sequence of a screen depends on the arrangement of the the screen’s widgets.
Widgets can be placed in a certain sequence to facilitate the movement of the human eye
when looking at the screen. For example, in the Western cultures the human eye is trained by
reading. It starts at the upper left corner of a screen, moves forwards and backwards across
the screen and ends at the lower right corner. Furthermore perceptual psychology revealed
that the eye moves from big widgets to small ones. According to these facts, a measure of
sequence can be calculated.

Aesthetic Measure of Screen Cohesion

Aspect-ratio is defined as the relationship between width and height of an object. Similar
aspect-ratios provide a good aesthetic in terms of cohesion. Therefore, aspect-ratios should
stay the same within a screen.

A measure of screen cohesion can be computed according to the two relative ratios:

• The aspect-ratio of the layout divided by the aspect-ratio of the screen.

• The relative arithmetic average aspect-ratio of the contained widgets divided by the
aspect-ratio of the layout.

Aesthetic Measure of Screen Unity

Unity is the property of a set of widgets to seem related or even to be seen as one thing. To
achieve unity within a screen, its widgets should be similarly sized and placed closer together.
The space between the widgets should be less than the space that is left to the extents of the
screen.

The measure of screen unity can be computed depending on the following three factors:

• The number of different sizes used.

• The free space within the layout.

• The free space within the whole screen.

6

Chapter 2 State of the Art

Aesthetic Measure of Screen Proportion

A measure of proportion of a screen can be derived according to the proportional relationship
of the screen’s widgets and the screen itself. There exist numerous proportional relationships
that are preferred in different cultures, and that are classified as aesthetically pleasing in all
of those cultures. According to Marcus [Mar92], these pleasing proportional relationships are
itemized below:

• Square: 1:1

• Square root of two: 1:
√

2 = 1:1.414

• Golden rectangle: 1:1,618

• Square root of three: 1:
√

3 = 1:1.732

• Double square: 1:2

In order to achieve an aesthetically pleasing screen, these proportional relationships should
be used as much as possible. The more the widgets of a screen and the screen itself resemble
these preferred proportions the better becomes the measure of screen proportion.

Aesthetic Measure of Screen Simplicity

Simplicity is given if the meaning of a collocation of widgets is easy to comprehend. The more
widgets a screen contains, the more alignment points are required and simplicity declines.
The measure of simplicity of a screen can be improved by minimizing the number of widgets
and by minimizing the number of horizontal and vertical alignment points.

Aesthetic Measure of Screen Density

Density is an indicator of the relation between the total screen area and the area used by
the screen’s widgets. Ngo et al. claim that a screen density of 50% is the optimum relation.
According to this optimum relation, an aesthetic measure of screen density can be computed.

Aesthetic Measure of Screen Regularity

Regularity analyses vertical and horizontal alignment points of a collocation of widgets. In
comparison to simplicity, regularity is less sensitive to the number of these alignment points.
It rather analyses the uniformity of the existing alignment points. The number of distinct
horizontal and vertical distances between the alignment points is taken into account. To
achieve regularity, a screen should have as few horizontal and vertical alignment points as
possible and the number of different distances between them should be held at a minimum.

Aesthetic Measure of Screen Economy

The measure of economy serves to indicate how simple a message displayed to the user is.
The fewer different sizes (of widgets) appear on a screen the better the measure of economy.
Therefore, a perfect screen in terms of economy can be achieved by using the same size for
each contained widget.

7

Chapter 2 State of the Art

Aesthetic Measure of Screen Homogeneity

The measure of homogeneity provides the information of how evenly widgets are distributed
among the quadrants of a screen. Perfect homogeneity can be achieved by placing the same
number of widgets in each quadrant of the screen.

Aesthetic Measure of Screen Rhythm

The rhythm of a screen indicates how frequently patterns of changes of widgets are recur-
ring on a screen. A screen with a recurring set of patterns of changes of widgets appears
more exciting in terms of rhythm, than a complex screen whose widgets are not ordered
systematically.

Aesthetic Measure of Screen Order and Screen Complexity

The measure of order of a screen depends on the aggregate of all measures that were mentioned
in the previous paragraphs. It ranges from minimal order, which indicates high complexity,
to maximal order.

2.1.2 Mathematical Relationships

As illustrated in Figure 2.1, each widget is characterized by the coordinates of its upper left
(UL) and bottom right (BR) corners. According to the coordinate system of a computer
screen, the positive branch of the y-axis in the figure is oriented downwards.

xUL xBR

yUL

Upper Left: UL = (xUL; yUL) yBR

Bottom Right: BR = (xBR; yBR)

y

Characteristic coordinates
x

Screen element

Figure 2.1: Characteristic coordinates of a widget.

According to these two coordinates and the coordinate system of Figure 2.1, a set of simple
mathematical relations between widgets can be established [BHLV94].

Horizontal sequencing

The two widgets E1 and E2 are horizontally sequenced if xBR,E1 is less than xUL,E2 . In this
case, E2 is placed next to E1.

Vertical sequencing

The two widgets E1 and E2 are vertically sequenced if yBR,E1 is less than yUL,E2 . In this
case, E2 is placed below E1.

8

Chapter 2 State of the Art

Left justification

The two widgets E1 and E2 are left justified if xUL,E1 is equal to xUL,E2 .

Right justification

The two widgets E1 and E2 are right justified if xBR,E1 is equal to xBR,E2 .

Upper justification

The two widgets E1 and E2 are upper justified if yUL,E1 is equal to yUL,E2 .

Bottom justification

The two widgets E1 and E2 are bottom justified if yBR,E1 is equal to yBR,E2 .

Horizontal centering

The two widgets E1 and E2 are horizontally centered if their horizontal centre-lines coincide
(
yUL,E1

+yBR,E1
2 =

yUL,E2
+yBR,E2
2).

Vertical centering

The two widgets E1 and E2 are vertically centered if their vertical centre-lines coincide
(
xUL,E1

+xBR,E1
2 =

xUL,E2
+xBR,E2
2).

Horizontal equilibrium

Three or more widgets are horizontally equilibrated if the horizontal distances between the
objects are equal.

Vertical equilibrium

Three or more widgets are vertically equilibrated if the vertical distances between the objects
are equal.

Diagonal equilibrium

Three or more widgets are diagonally equilibrated if their centre-points are equally distributed
and, therefore form a straight line when being connected.

Horizontal uniformity

Widgets are horizontally uniform if their lengths are equal.

9

Chapter 2 State of the Art

Vertical uniformity

Widgets are vertically uniform if their heights are equal.

Proportional equilibrium

Three or more widgets are proportionally equilibrated if both of the following two conditions
are applicable:

- The widgets are either vertically or horizontally uniform.

- The widgets are either vertically or horizontally equilibrated.

Total equilibrium

Three or more widgets are totally equilibrated if both of the following two conditions are
applicable:

- The widgets are vertically and horizontally uniform.

- The widgets are either vertically or horizontally equilibrated.

2.2 Placement Strategies

The current section outlines three placement strategies in detail. It starts with a two-column
based strategy and a right/bottom strategy proposed by [BHLV94]. The third strategy,
proposed by [KF93], is based on shape and size of the single widgets.

2.2.1 Two-Column Based Strategy

Independently from the set of widgets, the static two-column based strategy always results
in the same layout structure. As depicted in Figure 2.2, this layout structure consists of a
title on the top, two columns for the widgets and a preserved space for buttons either on the
bottom or on the right side of the screen.

The placement strategy tries to create two columns that ideally have the same height. There-
fore, it places all widgets below each other, resulting in a stack with a certain height and
width. This placement is performed considering some of the mathematical relationships that
were mentioned above. More precisely, the four justifications, the two uniformities and verti-
cal or horizontal equilibrium are considered when creating the stack. If the stack’s half height
is exactly between two widgets, the stack is divided at this position, resulting in two columns
of the same height. If the stack contains a widget at its half height, the stack is divided at
the next possible position, that results in a minimum of deviation of height between the two
columns. Therefore, the stack is either divided at the top or at the bottom of the widget that
is placed in the stack’s middle. The two columns’ widths depend on the maximum width of
its contained widgets.

10

Chapter 2 State of the Art

Interaction objects
First column

Interaction objects
Second column

Button Button Button Button

Button

Button

Button

Button

Button

Button

Title

Figure 2.2: Grid structure of the two-column based strategy (redrawn according to
[BHLV94]).

The choice of the location for buttons depends on the shape of the area occupied by the
title and the two columns. If this area is shaped horizontally, the buttons are arranged
horizontally on the bottom. If the constellation is shaped vertically, the space on the right
side is chosen for the buttons. In both cases, the placement strategy tries to arrange the
buttons considering proportional or total equilibrium. In case of horizontally arranging the
buttons on the bottom, they are separated by an equal distance and get the same height. In
case of vertically arranging the buttons at the right side, the buttons are equally separated
as well and each button gains the same length.

The two-column based strategy automatically groups related widgets close to each other.
Further, it justifies the widgets accordingly in order to increase unity. However, it has to be
stated that the use of special space for the buttons provides consistency but requires a lot of
additional space. The separation into two columns can possibly result in a huge amount of
unused space as well.

To give an example, a set of widgets with a predefined hierarchy is illustrated in Figure
2.3(a). It represents a screen of an application for hospital admission. The result that can
be achieved with the aid of the two-column strategy is depicted in Figure 2.3(b). One of the
main disadvantages of this strategy is the huge amount of space that can possibly remain
unused. This unused space is represented by the grayed regions in the figure. As shown
in Figure 2.3(b), the two columns must not be of equal height. Therefore, the space at the
bottom of the second column remains unused. Further unused space results from the fact that
all widgets are arranged below each other before separating the stack. A possibly existing
space next to a widget (e.g. next to the group boxes in the first column of the figure) is not
available for further placement. The additional space for the buttons on the right side causes
unused space as well.

The two-column based strategy most likely achieves a good score in terms of screen balance,
symmetry and alignment. On the other hand, due to the large amount of required space in
most cases, it would fail in terms of economy. Furthermore, a layout created by this strategy
may result in a poor LA-score (Layout Appropriateness [Sea93]).

11

Chapter 2 State of the Art

EditBox: Complete address

GroupBox: Room type

RadioBox: Room types

ScrollableListBox: Regimen

PushButton: OK

PushButton: Cancel

EditBox: Medecine man

EditBox: Affiliation type

EditBox: Identification number

EditBox: Organization code

ScrollableListBox: Service

RadioBox: Sex

RadioBox: Civil status

GroupBox: Civil Status

EditBox: Date of day

DialogBox: Admission

EditBox: Firstname

EditBox: Birthdate

EditBox: Phone

GroupBox: Sex

EditBox: Name

GroupBox: Patient

(a) User interface model.

Name:

Firstname:

Birthdate:

Complete Address:

Phone Number:

Sex

Male

Female

Civil status

Unmarried

Married

Widowed

Divorced

Organization code:

Identification number:

Affiliation type:

Medecine man:

Patient

Room type

Single room

Two beds room

Four beds room

Service:

Regimen:

Ok

Cancel

Date of day:

Admission:

(b) Using the two-column based strategy.

Figure 2.3: Two-column based strategy – example (redrawn according to [BHLV94]).

2.2.2 Right/Bottom Strategy

The second placement strategy described in [BHLV94] is the right/bottom strategy. It is a
strategy that dynamically places widgets considering the remaining space on the screen. In
comparison to the two-column based strategy, the right/bottom strategy results in a layout
that is optimised in terms of space consumption. If possible, the strategy places widgets with
horizontal sequencing. Depending on the ratio between the height of the widget to be placed
and the height of the previously placed widget, the strategy applies some of the mathematical
relationships mentioned in 2.1.2. If both heights are equal, proportional uniformity is applied
[BHLV94]. In case of different heights, top or bottom justification is applied depending on the
available space. Furthermore, the strategy tries to square radio buttons as much as possible
in order to preserve balance and unity. Widgets that own an identification label are either
arranged with horizontal sequencing and bottom justification, or with vertical sequencing in
conjunction with left justification.

Using the right/bottom strategy, the hierarchy of widgets that served as an example for the
two-column based strategy (see Figure 2.3(a)) results in the GUI shown in Figure 2.4.

Since the right/bottom strategy tries to minimize the wasted space and to place widgets close
together, it is most likely well rated in terms of LA. Although, in case of high screen density,
it may appear in an unpleasant way.

12

Chapter 2 State of the Art

Final possible solutions are :
(1.1.2.1.2.1)
c- I I--

r-3 I 4 I
k- q brbI

El
El
lzcl

El .2.2.2.1 j
-r

L-F?= -1 -
I-- 4 I
I 5 II-B
(1.2.1.2.2.1)
I I
I 2 I31

4 -- I 1
I 5

II
6

I
(1.2.2.2.2.2)
I- IE”

The final result of the example is depicted in fig. 25.
The right/bottom strategy is quite the opposite of the two-
column strategy : the first is only driven by user-dcfinablc
heuristics, whereas the former is unmod.ifiablc. In each
case, it is already been proved [3,4,11] tlhat a dircct-ma-
nipulation graphical editor should provide complete facili-
ties for tailoring the final layout of the PU. The output of

the generation may be considered as a fair
starting input for manual refinement. This
task can also be computer-aided supported to
avoid any catastrophe of the designer. For
instance, the designer should be not allowed
to destroy some parts that are already well
placerl.

CONCLUSION AND FUTURE WORKS
Experiments with Static ancl Dynamic
Strategies
What could bc interesting is to automatically
evaluate each result of the two strategies
according to diffcrcnt metrics. The two-
column strategy may receive a LA-score
(dcfincd by Sears I.lO]) which is worse than
the right/bottom strategy. It is more likely
that the right/bottom strategy provides a
layout which should be quasi-LA-optimal
since it tries to follow the most frequent
scqucncc among IO and to minimize blank
space and gaps between groups.

But this conclusion seems not to be obvious.
Having an optimal layout for one metric
does not necessarily lead to an optimal solu-
tion for another metric. For instance, a lay-
out generated by the two-column strategy
shall benefit of a good score in measuring its
symmetry, balance, and alignments. But it
will certainly not receive the best score in
measuring the Layout Appropriateness. Our
opinion is that having a LA-optimal layout

dots not guarantee an acsthetic-optimal layout for
increasing the subjective saMaction of the user. The two-
column strategy should gain a good score for the
predictability too since its consistency is checked each
time, whcrcas it rcgrcts not to have a good score for the
economy metric since remaining spaces arc left.

ate of day : 1 1

Patient
Name : II
Firstname : II
Birthdate : El
Complete address : r-1

Phone number :

pqpEiiE&zJ

I ,

Organization code :

Identification number :
Affiliation type :

Medicine man : I

Service : I

r-Room type
@ Sin& 0 Two beds 0 Four beds

kegimen : I@
Message :I]

Figure 25. Th.e example resulting from the Right/Bottom strategy.
Figure 2.4: Result of the Right/Bottom strategy [BHLV94].

2.2.3 Shape- and Size-Analysis Based Strategy

A strategy that considers the shape and the size of widgets when arranging them is presented
in [KF93]. A binary tree structure of bounds (extents) serves as a representation of the GUI.
The leafs at the bottom of the tree represent the single widgets and, therefore have defined
dimensions. The dimension of the group-bounds above, which represent the arrangement of
their leafs, is initially unknown and are obtained within the process.

As depicted in Figure 2.5, this tree structure is processed from bottom to top. At each step,
two bounds are analysed in terms of size and shape. According to this information, the two
bounds are arranged with horizontal or vertical sequencing:

• If the maximum width of the two bounds is greater than their maximum height or if
these two values are equal, vertical sequencing in conjunction with left justification is
applied. The wider of the two bounds is placed on top.

• If the maximum width of the two bounds is less than their maximum height, horizontal
sequencing in conjunction with upper justification is applied. The higher of the two
bounds is placed on the left.

The created arrangement determines the extents of the next higher group-bound of the tree. A
possibly resulting free area (remainder area) remains available for further placement. When
encountering the root of the tree, the process ends and dimension and layout-data of all
bounds is set.

13

Chapter 2 State of the Art

remainder area

Figure 2.5: Placement process, working with the basic shape analysis (redrawn according
to [KF93]).

In order to increase efficiency, the strategy can be extended in a way that more than two
bounds are examined and arranged at once. As depicted in Figure 2.6, bounds with similar
shape and size are grouped and arranged in the following way:

• If the majority of similar bounds is shaped horizontally, they are arranged with vertical
sequencing in conjunction with left justification, starting with the broadest bound on
the top.

• If the majority of similar bounds is shaped vertically, they are arranged with horizontal
sequencing in conjunction with upper justification, starting with the highest bound on
the left side.

If the given screen does not provide enough space for a certain arrangement, the strategy
tries to apply overflow solutions (e.g. minimizing certain widgets; replacing widgets by smaller
alternatives; minimizing margins and spacings; etc.) [Kim93].

14

Chapter 2 State of the Art

Similar shapes Similar shapes

Figure 2.6: Placement process, working with the extended shape analysis (redrawn accord-
ing to [KF93]).

15

Chapter 3

UCP – Unified Communication
Platform

The UCP framework has the purpose to simplify the creation of applications. These ap-
plications can be dedicated to machine-machine and to human-machine interaction [Pop09].
It is a model-driven approach for generating applications tailored to various target devices
(e.g. PC monitor, PDA, touch screen, etc.). A discourse model acts as underlying model.
Based on human speech act theory, it describes the interaction between two communicating
parties (human-machine as well as machine-machine) [KBFK08]. The UCP framework auto-
matically transforms this discourse model into a structural representation of a graphical user
interface (GUI). This GUI representation is an instance of the structural UI meta-model,
which is described below. According to the chosen target device, the Layout Module, that is
described in Chapter 4, assigns a layout to this structural GUI representation. If all relevant
attributes of the structural representation of the GUI are set, a final GUI can be generated
and displayed on the target devices screen.

Independent from the target device and the graphical toolkit used, a designer with limited
programming skills can create various applications. Furthermore the designer does not have
to deal with low-level machine-machine interaction protocols since the UCP framework takes
over this responsibility. A created application does not differentiate whether it communicates
with a human or another application. The possibility of creating systems for human-machine
as well as for machine-machine interaction offers a wide field of application.

The current chapter outlines the basics of the UCP framework, that are needed to comprehend
the Layout Module described in Chapter 4. It gives a short overview on the Discourse Model
in Section 3.1 and on the Structural User Interface meta-model (Structural UI) in Section 3.2.
The generation process of the Structural UI model out of the Discourse Model is described in
Section 3.4. This model-to-model transformation is performed by matching certain patterns
in the discourse model with a defined structure in the structural UI model using a predefined
set of matching rules.

According to the current progress of the UCP framework, the definitions made in this chapter,
and especially in Section 3.2, represent an update of the elaborations of [Ran08].

16

Chapter 3 UCP – Unified Communication Platform

3.1 Discourse Model

The discourse model is a representation of the interaction of two parties (man-machine or
machine-machine) on a high level of abstraction. It is based on human speech act theory
and, therefore offers a far more intuitive alternative to common programming languages.

A detailed description of the discourse model and additionally on its underlying rhetorical
structure theory (RST) is given in [Ran08]. The discourse model has low effect on the layout
calculations. The only information that really concerns the layout calculations is the discourse
relation to which certain structural UI elements are tracing back. The current section only
gives an overview on the most important building blocks of the discourse model.

Kavaldjian et al. declare communicative acts to be the most important ingredients of the
discourse [KRP+10]. Those communicative acts are derived from human speech acts and
model an utterance of a single communication partner that can either be an application or
a user. Certain pairs of communicative acts form so-called adjacency pairs, that define a
predefined sequence of utterances (e.g. question and answer).

By relating adjacency pairs to each other, a tree structure can be built. The relations that are
needed for this purpose are called discourse relations. They can either be procedural relations
(Condition, IfUntil or Sequence) or relations that are derived from rhetorical structure theory
(RST relations). There are two different types of RST relations:

• Symmetric (multi-nuclear) RST relations relate similar subtrees that have the same
temporal priority. The symmetric RST relations are the Alternative, the Contrast and
the Joint relation.

• Asymmetric (nucleus-satellite) RST relations relate subtrees of different temporal prior-
ity. The nucleus links the main objective and the satellite provides additional informa-
tion, supporting the nucleus. Those asymmetric RST relations are the Background, the
Elaboration and the Result relation, whereby an Elaboration relation can be specialized
into an Annotation and a Title relation.

Regarding to the Layout Module it is important to know from which discourse relation a
certain structural UI element was created. If a discourse relation relates the communicative
acts to each other as it is done in case of an asymmetric RST relation, the resulting part of
the structural UI model gets its layout from predefined rules during its generation process. In
case of a symmetric RST relation, the resulting part of the structural UI model needs to be
layouted by the Layout Module. To give an example, a procedural Sequence relation results
in a structural UI container element with children that have a strict order. In comparison,
a symmetric RST relation results in a structural UI container whose children do not have
a predefined order. Therefore they can be reordered according to different strategies. The
structural UI outcome of a Sequence has to be layouted as well, but a reordering is not
allowed in this case.

Kavaldjian et al. present the generation process of a structural UI model [KRP+10]. For that
purpose, they have chosen a small excerpt of a discourse model for flight booking to serve as
an example (see Figure 3.1). The yellow (or light gray) communicative acts in this example
are uttered by the application, whereas the green (or dark gray) ones define utterances of the

17

Chapter 3 UCP – Unified Communication Platform

Figure 3.1: An excerpt of a FlightBooking discourse model [KRP+10].

customer. Each of the two ClosedQuestion-Answer pairs forms an adjacency pair, which is
indicated by the diamonds in the diagram. Those adjacency pairs model the questions for a
departure and a destination airport. Out of a list of available airports for each, the customer
has to answer both questions. In this example, the two adjacency pairs are related to each
other by the Joint relation. Being a symmetric RST relation, the Joint relation denotes
that the adjacency pairs in its nucleus branches have the same priority and, therefore they
are not ordered temporally. This means that the two ClosedQuestion-Answer pairs can be
displayed in parallel or in sequence. Depending on the screen size, different rules determine
the presentation of the two ClosedQuestion-Answer pairs as well as of the Joint relation, and
the structural UI is created accordingly.

3.2 Structural User Interface Model

The UCP framework generates an abstract model that represents the structure and the
content of the graphical user interface (GUI), that has to be created. This abstract model
is called the structural UI model (see [Ran08]). Its generation is performed by matching
certain patterns in the Discourse Model and mapping them to a defined structure in the
structural UI model. It is represented by a tree structure of objects, that are instances of
the abstract Widget class. If all attributes of the single Widgets are set, the structural UI
model can be transformed to source-code, that creates a displayable GUI. Analogously to
[Ran08], structural UI Widgets are written below in small capital letters to differentiate
them from Java Swing widgets or widgets from other toolkits, that are just written in lower
case.

The structural UI model serves as basis for the calculations provided by the Layout Module,
which makes it worth mentioning here. In order to provide a structural UI model with a
layout and to calculate the size of its Frames, the relevant layout and size attributes of
its contained elements have to be calculated and set. Not all information provided by the
structural UI model is used within the layout- and size calculations of the Layout Module.

18

Chapter 3 UCP – Unified Communication Platform

Although not all information is relevant for the Layout Module, the currently existing Wid-
get subclasses and their attributes are completely listed below. This is done with the inten-
tion of giving an overall description of the structural UI meta-model.

3.2.1 Widget Class

The definitions made in this section represent an update to [Ran08]. This is necessary because
the structural UI meta-model has changed in the course of time and no current reference is
available.

A Widget abstractly represents a single displayable element that can be found in a GUI. It
does not provide any information about the toolkit that is used to create the resulting GUI.
Due to this, it is possible to transform the structural UI model into source-code, using different
toolkits (e.g. Web, Java Swing, etc.) [KBFK08]. For the time being, the size calculations
that are necessary for the layout calculations described in Chapter 4, are tailored to Java
Swing widgets only.

Since some of the widget properties are used below, they are listed here:

visible - The value of this attribute defines whether the widget is initially visible or
not.

style - Each widget can be assigned a certain style, which effects the way it is displayed.
The style corresponds to an entry in a cascading style sheet (CSS), which is discussed
in 3.3.

name - The name is used as a unique reference to the widget.

enabled - This property enables or disables the widget in the actual screen represen-
tation.

tracesTo - This field traces the widget back to a communicative act. This commu-
nicative act delivers the information needed to be displayed by the widget.

layoutData - Contains the data needed to set constraints imposed by a certain layout
type (e.g. GridBagConstraints).

parent - In case the widget is contained by another widget, this field specifies the
container widget.

content - This property field holds the data or a reference to the data that the widget
should display.

contentSpecification - This property is just relevant for the mapping of the discourse
model to the structural UI description. It specifies which data to put in the widget’s
content field by means of the Object Constraint Language(OCL).

text - If no content is specified, this field contains a static text to be displayed by the
widget.

pointingGranularity - This attribute can either be set to FINE or COARSE. Ac-
cording to the chosen pointing granularity, the ListWidget is rendered differently.

19

Chapter 3 UCP – Unified Communication Platform

- FINE is selected if the user interface is operated using a mouse, or a pen on a
touchscreen, for example.

- COARSE is selected if the user operates in a less exact way (e.g. finger on a
touch screen).

width - Defines the widgets width in number of pixels.

height - Defines the widgets height in number of pixels.

getFrame - This method returns the Frame, that contains the current Widget. to
a window.

As depicted in Figure 3.2, the Widget class is specialized in either the Panel, the In-
putWidget or the OutputWidget subclass. These three subclasses inherit all character-
istics from the Widget class and are further specialized in various other subclasses them-
selves. Unlike the OutputWidget, that has the single purpose of presenting information,
the InputWidget gathers it from the user. To give a brief overview, the three Widget
subclasses as well as their according parts of the class diagram are described in the following
subsections.

-widgets
-layout

Panel
-event
InputWidget OutputWidget

+getFrame()

-visible
-style
-name
-enabled
-tracesTo
-layoutData
-parent
-content
-contentSpecification
-text
-pointingGranularity
-width
-height

Widget

Figure 3.2: Widget class and its specializations.

3.2.1.1 Panel Class

The Panel class is shown in the class diagram of Figure 3.3. It inherits its characteristics
from the Widget class. It serves as a container for any other kind of Widget. Therefore,
it extends the Widget class by introducing the attributes widgets and layout :

widgets - This property hosts the Widget objects, that are contained by the Panel.

layout - Defines the layout-manager that is used to arrange the Widgets contained
by the Panel.

20

Chapter 3 UCP – Unified Communication Platform

Furthermore, the Panel class serves as a base class for other classes that contain widget
objects (e.g. ListWidget).

-widgets
-layout

Panel

Choice

TabControl

-elements
-selectionType
-renderingType

ListWidgetOptional
-tetle
-screenResolutionX
-screenResolutionY

Frame
-title

Dialog

Figure 3.3: Panel class and its specializations.

Choice Class

This class offers the opportunity to choose exactly one out of its child Widgets. A Choice
is the root of any structural UI model. In case of being the root of a structural UI model,
the Choice’s children are the windows to be generated (i.e. Frames). It may, of course
also appear somewhere within the tree structure of the structural UI model. Choice is
derived from Panel. As Panel is derived from Widget, this class inherits a Widget’s
characteristics as well.

TabControl Class

Being a specialization of a Choice, theTabControl offers the possibility to the user to
switch between different Panels within the same screen. Concerning the inherited charac-
teristics it is equal to Choice, differing only in the code that needs to be generated.

Dialog Class

This class represents a modal window. It extends the Panel class by introducing the title
attribute:

title - Defines the title text of the window.

Frame Class

The Frame class represents a window of the generated application. More than one window
can exist in a single application and, therefore in the corresponding structural UI model.
Frame can only exist directly below the root Choice of the structural UI model. A Frame
extends the Panel class by introducing the following attributes:

21

Chapter 3 UCP – Unified Communication Platform

title - Defines the title text of the window.

screenResolutionX - This property defines the x resolution of the window (in pixels).

screenResolutionY - This property defines the y resolution of the window (in pixels).

Optional Class

This class offers the opportunity to choose any number of its child Widgets to be displayed
at the same time.

ListWidget Class

The ListWidget class represents a recurring set of widgets. It inherits all attributes from
the Panel class and from the InputWidget class. The ListWidget class introduces the
following attributes:

elements - A reference to the elements that are contained by the ListWidget.

selectionType - This property declares, whether the ListWidget provides single or
multiple selection.

renderingType - This property defines, how the ListWidget is rendered. There are
three different possibilities:

- If this property is set to FOLDOUT, the ListWidget is displayed as a drop down
widget. It can optionally have a submit button, and provides single selection only.

- If this property is set to PANEL, the ListWidget is displayed as a panel that
contains all element information. Each entry requires an InputWidget (e.g. a
RadioButton for single selection, CheckBox for multiple selection).

- If this property is set to LIST, the ListWidget is displayed as scrollable list.
The single entries do not require an InputWidget, and single selection as well
as multiple selection is provided.

3.2.1.2 InputWidget Class

The InputWidget class represents the counterpart to OutputWidget, which is described
below. Furthermore, it serves as a base class for all Widgets, that are used to collect
information from the user. It extends the Widget class by introducing the property event,
and can be specialized as shown in the class diagram of Figure 3.4.

• event - This property holds the specification of what needs to be done with the collected
data.

22

Chapter 3 UCP – Unified Communication Platform

-event
InputWidget

-picture
ImageMapButton

CheckBox

-selected
RadioButton Hyperlink

-knownValuesOnly
-caseSensitive

OfferValueTextBox

TextBox TextField
-date
DateTimePicker

-list
ComboBox

-elements
-selectionType
-renderingType

ListWidget

Figure 3.4: InputWidget class and its specializations.

ListWidget Class

The ListWidget also inherits all attributes from InputWidget. A detailed description
can be found in 3.2.1.1.

Button Class

The Button class defines the abstract representation of a button widget and is derived from
InputWidget.

RadioButton Class

The RadioButton represents a single selectable option in a list of two or more options
that exclude each other. It inherits all its characteristics from the Button class and further
extends it by introducing the selected attribute:

• selected - This property declares, whether the RadioButton is selected or not.

CheckBox Class

The CheckBox allows the user to set one or more options. It inherits all its characteristics
from the RadioButton class.

Hyperlink Class

The Hyperlink is the abstract representation of a hyperlink and inherits all its characteris-
tics from Button.

23

Chapter 3 UCP – Unified Communication Platform

ComboBox Class

A ComboBox Widget represents the abstract class of a widget that allows the user to
choose one item from an offered list. It extends the InputWidget class introducing the
property list :

• list - This property contains the items to be added to the list that is offered to the
user.

DateTimePicker Class

This class represents a widget that allows the user to choose a certain date as well as a certain
time. It extends the InputWidget class by introducing the date attribute:

• date - This property declares the selected date and time.

ImageMap Class

This class belongs to the category InputWidget and is, therefore derived from this class.
It represents a graphic, on which different sections can serve as a hyperlink. It extends the
InputWidget class by introducing the picture attribute:

• picture - This property field carries the URL of the picture to be used.

TextBox Class

This class represents a user input field.

OfferValuesTextBox Class

This class is a representation of a user input field, that provides the user with a proposal of
known input values to choose, while typing (auto-complete). It extends the TextBox class
by introducing the following Attributes:

knownValuesOnly - This property declares, if only already known values are accepted
as valid input, or not.

caseSensitive - This property declares, whether case sensitivity is activated, or not.

TextField Class

This class represents a user input field that accepts more than one line.

24

Chapter 3 UCP – Unified Communication Platform

3.2.1.3 OutputWidget Class

The OutputWidget is derived directly from the Widget class and, therefore inherits all
its characteristics. It serves as a base class for all widgets that have the purpose to display
information to the user. The OutputWidget class can be specialized as shown in the class
diagram of Figure 3.5.

Label
-picture
PictureBox AudioBox

OutputWidget

Figure 3.5: OutputWidget class and its specializations.

Label Class

This class is an abstract representation of the label widget. As it can only be used to display
information, it is derived from the abstract OutputWidget class.

PictureBox Class

This class represents the abstract Widget used for the illustration of a picture. It extends
the OutputWidget class by introducing the picture attribute:

• picture - this property field carries the URL of the picture to be used.

AudioBox Class

This class is an abstract representation of a simple audio player.

3.2.2 LayoutManager Class

In order to arrange the widgets that are contained by panels, a LayoutManager is assigned
to each Panel. According to the Panels’s LayoutManager, a certain kind of Layout-
Data is assigned to each contained Widget. There are three types of LayoutManager,
that differ in the way of arranging widgets.

FlowLayout Class

The FlowLayout class is the abstract representation of the FlowLayout-Manager provided
by Java. It arranges the widgets side by side. If there is not enough space left up to the right
border of the container, the FlowLayout-manager starts with a new row. No additional
data and, therefore no LayoutData object is needed.

25

Chapter 3 UCP – Unified Communication Platform

XYLayout Class

The XYLayout class is the abstract representation of the XYLayout-Manager provided by
Java. It offers the possibility to the designer to choose absolute coordinates, where to place
the upper left corner of the widget. Additionally, a constant height and width can be assigned
to the widget. To arrange the widgets correctly, an XYLayoutData object is assigned to
each Widget that has to be arranged. An XYLayoutData object contains the following
attributes:

• x - This attribute specifies the absolute x coordinate of the upper left corner of the
widget (in pixels).

• y - This attribute specifies the absolute y coordinate of the upper left corner of the
widget (in pixels).

• width - This attribute specifies the width of the widget.

• height - This attribute specifies the height of the widget.

GridLayout Class

The GridLayout class is the abstract representation of the GridBagLayout-Manager pro-
vided by Java. By setting the various LayoutData properties, widgets can be arranged in
a dynamic grid. Therefore, a GridLayoutData object is assigned to each Widget, that
has to be arranged. A GridLayoutData object contains the following attributes:

• row - Starting with zero as the uppermost row, this attribute specifies the row in the
grid where the widget has to be placed.

• col - Starting with zero as the leftmost column, this attribute specifies the column in
the grid where the widget has to be placed.

• rowSpan - This attribute specifies the amount of rows a single widget should cover.
This value is set to one by default.

• colSpan - This attribute specifies the amount of columns a single widget should cover.
This value is set to one by default.

• alignment - This attribute is used to determine, where the component should be
displayed, if the area provided for this component is bigger than its actual size (e.g.
CENTER, NORTH, EAST, etc.).

• weightx - The GridLayout-manager offers to influence the distribution of extra space.
This attribute influences the distribution of extra space on the x-axis.

• weighty - The GridLayout-manager offers to influence the distribution of extra space.
This attribute influences the distribution of extra space on the y-axis.

• fill - Apart from alignment, this value is used, if the display area is larger than the
component’s size. It determines, whether the remaining space should be filled or not
and if so, in which way. Its value is defined by constants, and the possible selections
are HORIZONTAL, VERTICAL, BOTH and NONE.

26

Chapter 3 UCP – Unified Communication Platform

A well-defined grid, with equal sized cells, can be achieved with the aid of the following
GridLayout attributes:

• rows - Defines the number of rows within the grid.

• cols - Defines the number of columns within the grid.

• rowHeight - Defines the number of pixels that define a row’s height.

• colWidth - Defines the number of pixels that define a columns’s height.

3.2.3 The Structural UI Tree

As depicted in Figure 3.6, the tree structure generally consists of a single Choice at its root.
One level below that root element, at least one Frame is placed. Thus, the first two levels
of a structural UI model are preserved for the Choice of a set of Frames. One level below
the Frames, a Widget of any type can be placed, except the Frame element, which is
just allowed one level below the root Choice. Furthermore, the number of Widgets that
is contained by a single container Panel is not limited.

Figure 3.6: The structural UI tree.

After the generation of the structural UI model, the LayoutData of all Widgets is set in
two different ways:

1. A Panel that contains at least one InputWidget or OutputWidget, has valid
layouted children. The rule that transforms the corresponding part of the discourse
model into the structural UI Panel and its children, contains valid LayoutData of
the children as well. The Panel’s children are arranged accordingly.

2. If there are only Panels inserted into a container Panel, there is no valid LayoutData
set for these Panels. The corresponding rule does not contain valid LayoutData,
because there is no information about the dimension of each inserted child Panel.
Initially, the LayoutData for those child Panels are set to their default, resulting in

27

Chapter 3 UCP – Unified Communication Platform

Panels that are placed in the upper left corner of the container Panel in an overlapping
manner. LayoutData of those child Panels has to be set afterwards. This is done
with the aid of the Layout Module, which is discussed in Chapter 4 in detail.

3.3 Cascading Style Sheets

A range of styles are necessary to display the widgets on the screen in an appropriate way. A
detailed description about the styles that can be set in a Cascading Style Sheet, can be found
at http://www.w3.org/TR/DOM-Level-2-Style/css.html (March 2010). Moreover, they are
needed to calculate the size of each single widget whether it is a panel or not (see Section
4.4).

The default size of each Widget can be defined in a Cascading Style Sheet (CSS). It can
contain a Widget’s width and height as well as some other style data (e.g. font-name and
font-style, border-thickness and padding, etc.). For certain applications it might be necessary
to generate a number of GUIs for multiple target devices with different screen-resolution and
screen size (e.g. PC monitor, PDA, touch screen, etc.). Therefore, it is most helpful to define a
Cascading Style Sheet for each target device. These Cascading Style Sheets provide different
styles for each Widget. This style can be assigned to a Widget in three ways, that differ
in their scope by referencing:

1. Referenced by the Widget’s unique name attribute.

2. Referenced by the Widget’s style attribute.

3. Referenced by the Widget’s type.

If a style is assigned by more than one of the enumerated references, the style attributes (e.g.
text-size, padding, etc.) are combined with respect to the hierarchy of the enumeration. In
other words, style attributes are summarized and, in case of being assigned twice, e.g. by
Widget-name and Widget-style, the attribute with the higher priority is chosen.

3.4 Discourse Model to Structural UI Model Transformation
Process

The basic transformation process is described in [KBFK08]. It results in a structural UI
model, where all Widgets are arranged below each other. Introducing the Layout Module,
this process can be optimised as specified in [KRP+10].

The Layout Module sets the LayoutData of all structural UI Widgets that do not have
valid LayoutData, and simultaneously calculates the size of each contained Widget. As
the size calculation concerns the Frames as well, information about the amount of screen
space that would be necessary to display all Frames of a structural UI model, is available.
Subsequently, it can be checked, if the structural UI model’s Frames fit into a certain target
device’s screen size.

28

Chapter 3 UCP – Unified Communication Platform

Since the Layout Module only plays a role within the optimised transformation process,
the basic transformation process is not described in this section. Figure 3.7 illustrates this
optimised transformation process. First, the discourse model is transformed to a structural
UI model. This is done by matching certain patterns within the discourse model with a
defined structure in the structural UI model, using a predefined set of transformation rules.
The resulting structural UI model is layouted with the aid of the Layout Module and, thus
it can be evaluated in terms of size. If the layouted structural UI model does not fit into the
target device’s screen size, the discourse model is transformed once again, by use of another
set of transformation rules, that results in a smaller structural UI model. More precisely, a
single rule is exchanged by a smaller counterpart at each iteration. Again, it is checked if
the resulting structural UI model fits into the target device’s screen size. This procedure is
repeated until there are no more alternative rules left and, therefore no resulting structural
UI model can be created for the chosen target device. As soon as a structural UI model is
created that conforms to the target device’s screen size, it is further transformed to a final
UI and the transformation process ends successfully. If existing, this final UI represents the
largest outcome that is possible for a given target device.

If the transformation process does not succeed in creating a fitting structural UI model,
the smallest created structural UI model is taken. This structural UI model represents the
outcome that requires a minimum amount of extra space. It exceeds the limits of the target
device’s screen and scrolling has to be enabled.

Model2Model

Transformation

Model2Code

TransformationDiscourse

Model

Structural UI

Model

Final UI

Check if UI fits

Screen

Resolution

Further Transformation

Possible

Fitting UI

or

No Further

Transformation

Possible

Layout

Calculation

Figure 3.7: Transformation process.

At each iteration step, the set of transformation rules is changed, considering the following
requirements:

• The resulting structural UI model should use as much of the available screen space as
possible.

• The amount of navigation clicks should be held at a minimum.

• Scrolling should be avoided.

In [KRP+10], the discourse model shown in Figure 3.1 is transformed into a structural UI
model for three different screen sizes. The rules that are necessary for this transformation
process, are listed below:

• Closed Question Rule
This is the standard transformation rule for a ClosedQuestion-Answer adjacency pair.
It results in a structural UI Panel with layouted child Widgets. It contains a title

29

Chapter 3 UCP – Unified Communication Platform

Label, a set of RadioButtons, that represent the content of the ClosedQuestion
communicative act, and a Button to submit the chosen RadioButton entry (see
Figure 3.8(a)).

• Small Closed Question Rule
This rule results in a smaller outcome of a ClosedQuestion-Answer adjacency pair. It
results in a structural UI Panel with layouted child Widgets as well. In contrast
to the standard Closed Question Rule, it contains a title Label, a ComboBox, that
represents the content of the ClosedQuestion communicative act, and a Button to
submit the chosen ComboBox entry (see Figure 3.8(b) and 3.8(c)).

• Joint Rule
This is the standard transformation rule for a Joint relation. The Joint relation links
adjacency pairs that have the same temporal priority. It results in a structural UI
Panel that contains a set of child Panels without valid LayoutData (see Figure
3.8(a) and 3.8(b)).

• Small Joint Rule
This rule results in a smaller outcome than the standard Joint Rule. A TabbedPane
is created as container instead of a Panel. This TabbedPane contains a set of child
Panels, that do not have valid LayoutData (see Figure 3.8(c)).

In case of a screen size of 640 x 480, the transformation process starts with the Closed
Question Rule and the Joint Rule. The Layout Module is able to arrange the two Panels
that are created by each Closed Question Rule next to each other, resulting in a layouted
structural UI model, that fits into the given screen size. The transformation process ends,
and the layouted structural UI model is further transformed into the GUI that is shown in
Figure 3.8(a).

A screen size of 480 x 320 does not provide enough space for a valid outcome of the standard
rules (Closed Question Rule and Joint Rule). Therefore, in the second iteration step of
the transformation process, the Small Closed Question Rule is tried out instead of the Closed
Question Rule. This modification results in a fitting structural UI model. The Layout Module
arranges the two Panels that are created by each Small Closed Question Rule below each
other. The transformation process ends after this iteration. The resulting GUI is shown in
Figure 3.8(b).

In case of a screen size of 320 x 180, the Small Closed Question Rule and the Joint Rule
do not result in a fitting structural UI model. Subsequently, further transformation rule-sets
have to be tried out. Finally, a fitting structural UI model can only be created by using the
Small Closed Question Rule in conjunction with the Small Joint Rule. The corresponding
GUI that is created from the generated structural UI model is shown in Figure 3.8(c).

30

Chapter 3 UCP – Unified Communication Platform

(a) 640x480 (b) 480x320 (c) 320x180

Figure 3.8: Generated User Interfaces [KRP+10].

31

Chapter 4

Layout Module

The main issue when arranging Widgets on a screen with a predefined screen size is the
simple question of how to place them. Does there exist any information about how different
Widgets belong to each other by context and, therefore have to be placed closer together?
Is it possible to fulfill any constraints concerning user interface design (see 2.1)? Is there a
possibility to minimize the space needed?

Widgets that are conceptually related are arranged close together, since they are nested in
the same structural UI Panel. Subsequently, the hierarchy of the structural UI model deter-
mines the relationship between Wigets for layouting, and a further evaluation concerning
this task is not required.

The InputWidgets and OutputWidgets themselves already get their layout during the
generation process of the structural UI model mentioned in Section 3.4, using a predefined
set of transformation rules. The same applies to Panels that are nested together with
InputWidgets or OutputWidgets. Consequently, there is no need to decide where to
place those widgets (e.g. a Button, Label, etc.), but still their size attributes have to be
calculated and set (see Section 4.4). Constraints concerning user interface design can hardly
be considered here, since InputWidgets and OutputWidgets are already layouted within
their parent Panel. Layout calculation for a Panel’s children is only required, if those
children are all Panels (e.g. Choice, Optional, etc.). However, optimisations concerning
these constraints can be considered in future work as described in Chapter 5.

The Layout Module aims to calculate the size of all Widgets contained by a structural UI
model and to calculate LayoutData of Widgets, that do not have valid LayoutData set
after the transformation process. After its generation, a structural UI model contains a set
of Widgets, whose size attributes are not set a priori. Subsequently, a size calculation is
necessary for all Widgets to allow further layout calculations and to display the Widgets
properly on the screen. As already said, the structural UI model may contain Panels that
have already layouted child Widgets. The corresponding LayoutData of the Widgets is
set. Widgets that do not have valid LayoutData need to be layouted explicitly.

For the time being, the Layout Module is tailored to Java Swing widgets. If an application
has to be generated for another toolkit, the size calculation needs to be extended accordingly.

To define size and format attributes of Widgets, Cascading Style Sheets are used, which
can be edited by the designer. The Cascading Style Sheets may contain metric values such as

32

Chapter 4 Layout Module

millimeter or centimeter values as well. When using such values, the designer does not need
to make calculations concerning the screen resolution of different target devices when editing
the Cascading Style Sheets. Furthermore, a single Cascading Style Sheet is needed for target
devices of different screen resolutions. Nevertheless, in Java Swing a widget’s size as well
as other dimensions need to be set using pixel values and a conversion of possibly existing
metric values in the Cascading Style Sheets is required. The StyleSheetConverter, which is
a part of the Layout Module, converts the Cascading Style Sheets resulting in a converted
Cascading Style Sheet that only contains pixel values. This conversion is described in detail
in Section 4.3.

After the generation of the structural UI model, the contained Widgets do not have valid
size attributes. Since no LayoutData can be calculated without knowing the size of each
Widget, the size calculation for each Widget is one of the most important tasks provided
by the Layout Module. Furthermore, a Panel must be large enough for being able to display
its child Widgets properly. The size calculation is described in detail in Section 4.4.

Section 4.5 describes the strategy of arranging the Widgets. In order to make this task
computable, a grid with equal sized cells is created for each Panel whose children need to be
layouted. Step by step, all child Widgets are inserted into this grid. All inserted Widgets
are marked in a model of the corresponding grid that is represented by a two-dimensional
integer array. This enables a search for specific insertion points and their evaluation for
further Widget insertion.

The calculation of the LayoutData that is assigned to each Widget is described in Section
4.6.

Finally, in Section 4.7 some structural UI model examples are used to illustrate the results
that can be achieved with the aid of the Layout Module.

The current chapter starts with a description of the functionality of the Layout Module in
Section 4.1 followed by its integration into the UCP framework in Section 4.2.

4.1 Integrated Size Calculation and Layouting Algorithm

The purpose of the Layout Module is the size calculation for each Widget and, if needed, the
layout calculation of the Widgets that do not contain valid LayoutData. Furthermore, it
is required to layout Widgets in a space-saving manner. The number of Widgets where
LayoutData has to be set by the Layout Module, depends on the specific structural UI
tree.

To give an example, the structural UI model sketched in Figure 4.1 is traversed recursively,
bottom up (post-orderly). Table 4.1 lists the calculations that are made at each recursion
step. InputWidgets and OutputWidgets are merged here to IOWidgets in order to
simplify the following description.

The algorithm starts with the size calculation of IOWidget 6, IOWidget 5 and IOWidget
4 at recursion steps one to three. Afterwards, at recursion step four, Panel 3 is encountered.
Its children already have valid size attributes as well as LayoutData. Using those data, the
size of Panel 3 can now be calculated. At the next three recursion steps, the Dimensions
of IOWidget 3, IOWidget 2 and IOWidget 1 are calculated. Again, LayoutData of

33

Chapter 4 Layout Module

these IOWidgets is already set. At recursion step eight, the size of Panel 2 is calculated
according to its children. At step nine it is required to calculate the LayoutData of Panel
2 and Panel 3, before a size calculation for the encountered Panel 1 can start. Finally at
recursion step ten, Panel 1 gets its LayoutData and the size of Frame 1 is calculated and
set.

Choice

Frame 1

Panel 2 Panel 3

IOWidget 1 IOWidget 3IOWidget 2 IOWidget 6IOWidget 5IOWidget 4

Panel 1

Figure 4.1: Structural UI tree.

Table 4.1: Structural UI calculation order.

1 IOWidget6 x

2 IOWidget5 x

3 IOWidget4 x

4 Panel3 x

5 IOWidget3 x

6 IOWidget2 x

7 IOWidget1 x

8 Panel2 x

Panel2 x

Panel3 x

Panel1 x

Panel1 x

Frame1 x
10

9

Size calculation
Calculation of

layout-data
WidgetRecursion step

The calculations can only succeed by following the constraints itemized below:

• The width and height attributes of each Widget must be calculated. The calculation
of the size of a Widget is described in detail in Section 4.4.

• The size of each Panel can only be calculated if the width and height attributes of
its contained Widgets as well as their LayoutData are already set. Therefore the
structural UI model needs to be traversed recursively, bottom up. The calculation of
the LayoutData is described in detail in Section 4.5.

34

Chapter 4 Layout Module

As mentioned in the second item, the structural UI model has to be traversed recursively,
bottom up. At each recursion step, the Widget type is checked. Encountering an In-
putWidget or an OutputWidget, the layout engine assigns a width and a height to it.
Encountering a Panel the Layout Module prior sets the LayoutData of its children if
needed. Afterwards it assigns a width and a height to the Panel itself, considering padding
and border-width of each child.

To set LayoutData on panels, and thus give them an order within its parent panel, the
constraints itemized below are necessary to make decisions concerning the arrangement:

• The amount of free space that is wasted due to a single Widget insertion should be held
at a minimum. Therefore it is necessary to try each possible insertion point, choosing
the one that fits best (see 4.5.2).

• The frame width may not be exceeded when putting panels side by side.

• There is only one special case when this frame width limit can and must be exceeded.
That is the case when at least one element in the structural UI model is broader than
the given screen width itself.

The third item results in a layouted structural UI model, that does not fit into the target
devices screen. The screen width that would be necessary to display all widgets is finally set
in the structural UI Frame attribute width to indicate this circumstance. A further discourse
model to structural UI transformation is required or scrolling has to be enabled (see Section
3.4).

The data needed to calculate a Widget’s size is generally obtained by a converted Cascading
Style Sheet (see Section 4.3). This converted Cascading Style Sheet does not necessarily need
to contain all data required for the calculation. Therefore, the missing data has to be obtained
by another source, to provide a successful size calculation and consequently a valid result of
the layout algorithm. In this case, the alternative source is represented by a properties-file.
Concerning the size calculation, it functions as some kind of fail-safe mechanism and provides
the layout algorithm with the appropriate data.

Concerning the Layout Module, there are two different kinds of Panels. They differ in the
order of their children, which can be mandatory or not. The Layout Module treats the two
Panel types differently:

• The order of a Panel’s children is relevant and, therefore mandatory, if the Panel
traces to the procedural Sequence relation (ProceduralRelation) or if the Panel is an
instance of a ListWidget. A reordering of the child Panels is not allowed in this
case. Each child Widget has to be placed side by side, starting a new free line if there
is not enough free space left to the end of the screen width. In case of a ListWidget,
a new free line is started if the given width does not provide sufficient space to place
the next child Widget in the current row. Choosing the insertion point that leads
towards a minimum space consumption is not possible due to the mandatory order
of the child Widgets. Furthermore, the ListWidget represents an exception. Its
children are included in the layout process although they are no Panels. They are
treated like children of a Panel that traces to a Sequence. The choice of insertion
points is performed as described in 4.5.3.1.

35

Chapter 4 Layout Module

• The order of a Panel’s children is not relevant, if the Panel traces to an RSTMult-
iNucleusRelation. In this case, the child Panels are reordered either by their size or
their width considering padding and border-width at each side. This is done by using
the common known Bubble Sort algorithm, which is sufficient in this case due to the
limited amount of child Panels. Whether the child Panels are ordered by size or
width and whether it is started with the largest or smallest Panel is declared in the
properties-file. The ordering ensures that similar sized Panels are close together in
the insertion queue. Consequently, free space can be saved more easily. The choice of
insertion points is performed as described in 4.5.3.2.

If a Panel is encountered that cannot be described by the two itemized cases, no calculation of
LayoutData is required. This is the case if the Panel traces to any other DiscourseRelation.
Nevertheless it is necessary to calculate the size of such Panels.

4.2 Integration of the Layout Module

The Layout Module is called by the UCP framework after each generation of a structural
UI model (see the box named Layout Calculation in Figure 3.7). A generated structural
UI model is layouted by the Layout Module for a certain target device. For that purpose,
all LayoutData and Widget dimensions are set by the Layout Module. Afterwards, the
generation process checks if the layouted Frames fit into the target device’s screen. Width
and height of the Frames are compared to the predefined screen size of the target device.
If the size of a Frame exceeds the predefined screen size, the generation process generates
another structural UI model using the same Discourse Model as used before. The generation
is now performed with another set of rules that result in a structural UI model with smaller
Widgets or split screens. The generation process of a structural UI model is described in
Section 3.4 in more detail.

To deliver appropriate LayoutData as well as Widget dimensions, the Layout Module
requires a set of data for its calculations:

• Screen Resolution: The DPI of the target device’s screen.

• Screen Size: The width and height of the target device’s screen.

• Cascading Style Sheet: Contains styles and default sizes for Widgets.

Since a single pixel can be of different size depending on the target device’s screen resolution,
the Layout Module allows the designer to define distances like width and height in a Cascading
Style Sheets by using metric values. The use of metric values has the effect that a single
Cascading Style Sheet can be used for different target devices independently from their screen
resolution. Nevertheless, these distances have to be set in the Widget’s attributes as pixel
values and, therefore have to be converted appropriately. As depicted in Figure 4.2, the
Layout Module primarily converts all metric values that occur in the Cascading Style Sheet
into pixel values. The StyleSheetConverter described in Section 4.3 is responsible for this
conversion. The designer does not have to care about the target device’s specification when
editing the Cascading Style Sheet.

36

Chapter 4 Layout Module

Layout Module

Device
Specification

Screen
Resolution

Structural UI
Model

StyleSheetConverter

Respectively to the target
device’s screen resolution,
the StyleSheetConverter
converts all metric values of a
Cascading Style Sheet into
pixel values.

Layouter

The Layouter calculates the
required size and layout
attributes for all Widgets
contained by the structural UI
model.

Converted
Cascading
Style Sheet

Screen Size

Cascading
Style Sheet

Structural UI
Model (with valid
layout and size
data)

Figure 4.2: The Layout Module.

The Layout Module primarily uses the StyleSheetConverter to ensure that the Cascading
Style Sheet contains only valid pixel data. Afterwards, the Layouter calculates LayoutData
as well as size attributes for all Widgets contained by the structural UI model.

The functionality of the two mentioned classes is explained more precisely below.

4.3 StyleSheetConverter

The values required to set a Widget’s style are generally stored in a Cascading Style Sheet.
This style values are mostly given in unfavourable pixel values. The problem is, that target
devices can have different resolutions. The target devices’ resolution, given in Dots Per Inch
(DPI), determines the dimension of its pixel. To give an example, 100 pixels correspond to
2.65 cm in case of 96 dpi and to 3.53 cm in case of 72 dpi. This can easily be derived by
using Equation 4.1. The factor 2.54 is needed to transform inches into centimetres.

valuecm =
valuepx ∗ 2.54

DPI
(4.1)

Vice versa, a certain length given in centimetres corresponds to a different number of pixels,
that depends on the target devices’ screen resolution. Consequently, if an application has to
be rendered for different screen resolutions, a separate Cascading Style Sheet is required for
each screen resolution.

If the screen resolution of the target device is known a priori, it is possible to convert values
of different units (e.g. mm, cm, in, pt, etc.) to pixel values. Subsequently, the width and
height of a widget, for example, can be set by using centimeter values in the corresponding
Cascading Style Sheet. Therefore, the widget is displayed at exactly the same size on any
target device, independent of the target device’s screen resolution. In contrast, a pixel value
in the Cascading Style Sheet would lead to differently sized widgets on target devices that
vary in their screen resolution.

37

Chapter 4 Layout Module

The Equations 4.2, 4.3, 4.4 and 4.5 provide a conversion of the most relevant units into pixel
values. To guarantee as much pixels as required for each widget, the calculated pixel values
are rounded up to the next higher integer value.

• Millimetre → Pixel:

valuepx =

⌈
valuemm ∗DPI

25.4

⌉
(4.2)

• Centimetre → Pixel:

valuepx =

⌈
valuecm ∗DPI

2.54

⌉
(4.3)

• Inch → Pixel:
valuepx = dvaluein ∗DPIe (4.4)

• Point → Pixel:

valuepx =

⌈
valuept ∗DPI

72

⌉
(4.5)

Using those equations, the StyleSheetConverter converts the relevant values into pixel values.
The style attributes that have to be converted into pixel values by the StyleSheetConverter
are itemized below:

• width: Defines the widget’s width.

• height: Defines the widget’s height.

• padding: Defines the number of pixels that have to be left free at each side of the
widget.

• padding-top: Defines the number of pixels that have to be left free above the widget.

• padding-bottom: Defines the number of pixels that have to be left free below the
widget.

• padding-left: Defines the number of pixels that have to be left free at the left of the
widget.

• padding-right: Defines the number of pixels that have to be left free at the right of
the widget.

• border-width: Defines the number of pixels that are reserved for the widget’s border
at each side. It can be chosen out of three different border-widths, that are THIN,
MEDIUM and THICK. Their corresponding number of pixels can be derived from the
properties-file.

The functionality of the Layout Module allows the designer to edit metric values, such as
centimetre or millimetre values, when creating a Cascading Style Sheet. According to the
screen resolution of the target device, an application is rendered for, the StyleSheetConverter
converts those metric values to pixel values. Consequently, a single Cascading Style Sheet
can be used to define widget styles for target devices of the same type (PDA, Touch Screen
or PC Monitor) but with different screen resolutions.

38

Chapter 4 Layout Module

4.4 Size Calculation

The layout algorithm described in Section 4.5, is based on the size attributes of each Widget.
Since these size attributes are not set after the generation of the structural UI model, they
have to be calculated explicitly according to the Widget’s type. As previously mentioned,
this is done for each Widget, traversing the structural UI model recursively bottom up. At
each recursion step, the layout algorithm examines whether the current Widget is a Panel
or not. If it is not a Panel, only a size calculation is required. This is done by one of the
three approaches below with decreasing priority:

1. Width and hight attributes of the Widget are defined in the appropriate converted
Cascading Style Sheet and, therefore can be derived from the style sheet (see Section
4.3).

2. According to a Widget whose size has to be calculated, a so-called Java Swing dummy
widget is created temporarily. Its style attributes (e.g. font-style, font-name etc.)
are either obtained from the appropriate converted Cascading Style Sheet, or by the
properties-file that contains those data as well. The Widget’s height attribute is set
according to the height of the resulting dummy widget. The Widget’s width must
be obtained from the properties-file. This is necessary, because the text that has to
be displayed by the Widget and, therefore determines the Widget’s width, is not
available when size calculation is processed.

3. Width or height attributes of the widget are defined in the properties-file, that stores
various default values.

The resulting size is just the width and height of the Widget itself. Padding and border-
width do not affect the size of the Widget itself and are not considered in the size calculation.

4.4.1 Size Calculation for InputWidgets and OutputWidgets

Since size calculation is performed differently depending on a Widget’s type, this calculation
is explained in detail for each Input- and OutputWidget type. Note, that the Widgets
are matched to Java Swing widgets. To provide a size calculation for other toolkits, other
dummy widgets have to be used.

• Button
The Layout Module tries to obtain width and height by reading the converted Cascading
Style Sheet (see Section 4.3). If there is no relevant entry in the converted Cascading
Style Sheet for either of them, a Java Swing JButton is created as a dummy widget.
The various font attributes for this dummy are obtained as itemized below, whereby
the converted Cascading Style Sheet gains the higher priority:

– Font-name and font-size are either obtained by reading the converted Cascading
Style Sheet, or by reading the properties-file.

– Font-weight and font-style are either obtained by reading the converted Cas-
cading Style Sheet, or set to zero for plain text.

39

Chapter 4 Layout Module

Since information about the text to be displayed is not available when size calculation
is processed by the Layout Module, the created dummy can only determine the height
attribute of the button. The width attribute is set to a standard pixel value that can
be obtained from the properties-file as well.

• Hyperlink
The size calculation for a Hyperlink works analogously to the size calculation for a
Button. A Java Swing JLabel is used as a dummy widget.

• RadioButton
The size calculation for a RadioButton works analogously to the size calculation for
a Button. A Java Swing JRadioButton is used as a dummy widget.

• CheckBox
The size calculation for a CheckBox works analogously to the size calculation for a
Button. A Java Swing JCheckBox is used as a dummy widget.

• ComboBox
The size calculation for a ComboBox works analogously to the size calculation for a
Button. A Java Swing JComboBox is used as a dummy widget.

• TextBox
The size calculation for a TextBox works analogously to the size calculation for a
Button. A Java Swing JTextBox is used as a dummy widget.

• TextField
A TextField derives its width and height either from the converted Cascading Style
Sheet or the properties-file. The converted Cascading Style Sheet gets the higher pri-
ority.

• ImageMap
An ImageMap derives its width and height either from the converted Cascading Style
Sheet or the properties-file. Here again, the converted Cascading Style Sheet gets the
higher priority.

• DateTimePicker
A DateTimePicker derives its width and height either from the converted Cascading
Style Sheet or the properties-file. Here again, the converted Cascading Style Sheet gets
the higher priority.

• Label
The size calculation for a Label works analogously to the size calculation for a Button.
A Java Swing JLabel is used as a dummy widget.

• PictureBox
A PictureBox derives its width and height either from the converted Cascading Style
Sheet or the properties-file. Here again, the converted Cascading Style Sheet gets the
higher priority.

• AudioBox
An AudioBox derives its width and height either from the converted Cascading Style
Sheet or the properties-file. Here again, the converted Cascading Style Sheet gets the
higher priority.

40

Chapter 4 Layout Module

4.4.2 Size Calculation for Panels

The size calculation of Panels is performed differently, since the size of Panels depends on
the child Widgets they contain. Encountering a Panel at a single recursion step, the size
of its child Widgets is already set in the previous recursion step, but their LayoutData
does not necessarily need to be set at this time. In this case, the LayoutData of the child
Panels has to be set before in order to enable a size calculation of the Panel itself.

Depending on the Panel type, LayoutData is set differently (see Section 4.6) and size is
calculated as follows:

• Choice
In case of a Choice, one of the child Panels is chosen to be placed at the space
reserved by the Choice’s size. Therefore, the Choice’s size is set according to the
maximum extents of its child Panels. Padding and border width of the child Panels
are considered in the maximum extents as well. This ensures that each child Panel
fits into the space reserved for the Choice.

• TabControl
Each child Panel of a TabControl is placed in a single tab of the TabControl.
The TabControl must be large enough to be able to display all contained tabs. Fur-
thermore, the additional space that is claimed by the tabs’ header has to be considered.
Therefore, a Java Swing JTabbedPane is created as a dummy TabControl. Represen-
tatively for each child Panel, Java Swing JPanels are inserted into the JTabbedPane,
acting as single tabs. The preferred size of the JPanels is set according to the cor-
responding child Panels size, their padding and their border-width. Padding and
border-width of the child Panels are either derived from the converted Cascading
Style Sheet or set to zero. The inserted JPanels determine the size of the resulting
JTabbedPane and the size attributes of the TabControl are set accordingly.

• ListWidget
If the ListWidget’s renderingType attribute is set to LIST or PANEL, its size is not
affected by the child widgets’ size. In this case, it derives its width and height either
from the converted Cascading Style Sheet or the properties-file. Again, the converted
Cascading Style Sheet gets the higher priority. If the renderingType attribute of the
ListWidget is set to FOLDOUT, the height is derived from a Java Swing ComboBox,
that functions as a dummy and has exactly the hight for displaying a whole entry of
the ListWidget. The width is derived from the converted Cascading Style Sheet or
by the properties-file.

• Panel and Optional
When the layout part is completed for each child Widget, the size calculation for the
current Panel or Optional can be started. A Java Swing JPanel is created to func-
tion as a container dummy. Representatively for each child Panel, Java Swing JPanels
are inserted into the JPanel container dummy. The preferred size of the inserted JPan-
els is set according to the corresponding child Widget’s width and height attributes,
enlarged by their padding and border-width at each side. Furthermore, the inserted
JPanels are layouted according to the corresponding child Widgets’ LayoutData.
Padding and border-width of each child Widget are derived from the converted Cas-
cading Style Sheet. If an according entry in the converted Cascading Style Sheet does

41

Chapter 4 Layout Module

not exist, these values are set to zero. After all JPanels are inserted, the size of the
resulting JPanel container dummy represents the size of the Panel or Optional under
test. Its width and height attributes are adopted.

• Frame
The size calculation for a Frame works analogously to the size calculation of a Panel
or an Optional. In order to consider the additional space for the Frame’s title-bar,
a Java Swing JFrame is used as a container dummy.

Furthermore, in case of Panels, this size calculation is not just needed to make decisions
about where to place them in the next recursion step, but also to ensure that its contained
child Widgets can be displayed properly on the screen. For example, a single widget W ,
that is nested in a panel P , can only be displayed properly, if P is large enough. The width
and height of panel P , that contains the widget W , must fulfill the following constraints:

• The panel’s width needs to be greater or equal than the widget’s width, summarized
with its padding and border-width at the left and the right side (see Equation 4.6).

Pwidth ≥Wwidth + WpaddingLeft + WpaddingRight + WborderWidthLeft + WborderWidthRight

(4.6)

• A panel’s height needs to be greater or equal than the widget’s height, summarized
with its padding and border-width at the bottom and the top (see Equation 4.7).

Pheight ≥Wheight +WpaddingBottom +WpaddingTop +WborderWidthBottom +WborderWidthTop

(4.7)

This condition is similar for a collocation of several widgets. To be displayed properly, the
layouted widget collocation, with respect to the padding and the border-width of all widgets,
must entirely fit into the panel. Therefore, it is of highest importance to know the exact
number of pixels (vertical and horizontal extents), claimed by a collocation of widgets.

4.5 Layout Algorithm

When widgets with different width and height values have to be arranged, the question arises
which layout-manager to choose. The LayoutManagers provided by the UCP framework
were already explained in 3.2.2. The Layout Module uses the most customizable GridLay-
out-manager (Java Swing GridBagLayout-Manager) and assigns the appropriate layout-data
(GridLayoutData of the structural UI meta-model) to the Panels, that need to be ar-
ranged. The FlowLayout-manager (Java Swing FlowLayout-Manager) is not used here
because of its low flexibility.

A short example illustrates the problems that can occur by using the GridBagLayout-Manager.
A set of Java Swing JPanels is arranged. Figure 4.3 shows three panels P1.1, P1.2 and P1.3,
whose preferred size attributes are set. The three panels have to be arranged in their parent
panel P1. The preferred size attribute of P1 is not set in this example. Therefore, widgets of
any size can be inserted into P1, which is automatically resized afterwards to ensure enough
space for its inserted widgets.

42

Chapter 4 Layout Module

.

.

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

Panel

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1) (row: 0, col: 2)

.

Px.x

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

(row: 1, col: 1)

Px.x

cell border wasted spaceinsertion pointLegend

Legend cell border insertion point wasted space

Legend cell border insertion point wasted space

P1.1

P1.2

P1.3

P1.1

P1.2

P1

P1

P1

P1

P1.2

P1.3

P1.1

P1.1

P1.2

P1.1

P1.2

P1.3

P1.3

P1.1

P1.2

P1.3

P1.1
P1.2

P1.3

Figure 4.3: panels to be arranged (1).

Using the GridBagLayout-Manager, the three panels can be arranged in various ways. In
this example, the first panel to be placed in P1 is P1.1, followed by P1.2 and finally by P1.3.
Figure 4.4(a) illustrates the special case, where P1.1 and P1.2 are arranged next to each
other, and P1 is resized according to the current collocation of the inserted panels. Colspan
and rowspan of the two placed panels are set to one in this example. P1.1 is placed at row
zero and column zero. Therefore, two possible insertion points for P1.2 exist. These are
below P1.1 at row one and column zero, and to the right of P1.1 at row zero and column one.
The second one is chosen in the current example. Fully aware of the fact that arranging them
below each other would save space, they are arranged next to each other in this example, to
reveal some problems when using the GridBagLayout-Manager.

As shown in Figure 4.4(a), the red marked space above and below P1.2 is not available any
more. For further panel inserting, another insertion point has to be found. This is done
in Figure 4.4(b). Again, plenty of space is wasted. To make the wasted area under P1.2
accessible for P1.3, the rowspan of P1.1 has to be set to a value greater than one. In Figure
4.4(c) a rowspan of two is chosen, and a second row is created. P1.1 uses both of them at
column zero. P1.2 can stay at row one and column zero. P1.3 can be placed at row one
and column one, as shown in Figure 4.4(c). That way, P1.2 and P1.3 are placed in the same
column, each in a single row and the wasted space is reduced.

Each cell can have different width and height, because it adapts its dimension to the widgets
that are placed on it. If several widgets of different widths are placed below each other in a
single column, the column’s width is automatically resized according to the maximum width
of the widgets. The same characteristics are valid when several widgets are placed next to
each other in a single row. A row adapts its height to the highest widget, it contains. This
behavior gets more and more confusing, when single widgets obtain more than one row or
column. A precise declaration of the different cell dimensions cannot be made by reasonable
effort.

These facts complicate further calculations. It is difficult to make decisions about the widgets’
rowspan and colspan, and to calculate the free space that is available to place further widgets.
The question of how to find an optimum number of rows or columns that should be allocated
to a single widget, is not a trivial one. The cells that are occupied by other widgets, have to be
remembered as well as their width and height. They are not available for further placement.

43

Chapter 4 Layout Module

The search for insertion points is confusing as well, because of the different cell dimensions
and the fact, that their dimensions can alter when further placement is done.

.

.

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

Panel

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1) (row: 0, col: 2)

.

Px.x

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

(row: 1, col: 1)

Px.x

cell border wasted spaceinsertion pointLegend

Legend cell border insertion point wasted space

Legend cell border insertion point wasted space

P1.1

P1.2

P1.3

P1.1

P1.2

P1

P1

P1

P1

P1.2

P1.3

P1.1

P1.1

P1.2

P1.1

P1.2

P1.3

P1.3

P1.1

P1.2

P1.3

P1.1
P1.2

P1.3

(a) P1.2 is placed to the right of P1.1, wasting the marked space above and below.

.

.

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

Panel

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1) (row: 0, col: 2)

.

Px.x

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

(row: 1, col: 1)

Px.x

cell border wasted spaceinsertion pointLegend

Legend cell border insertion point wasted space

Legend cell border insertion point wasted space

P1.1

P1.2

P1.3

P1.1

P1.2

P1

P1

P1

P1

P1.2

P1.3

P1.1

P1.1

P1.2

P1.1

P1.2

P1.3

P1.3

P1.1

P1.2

P1.3

P1.1
P1.2

P1.3

(b) Since the marked space above and below P1.2 is not available any more, P1.3 has to
be placed beside, wasting space itself.

.

.

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

Panel

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1) (row: 0, col: 2)

.

Px.x

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

.

(row: 1, col: 1)

Px.x

cell border wasted spaceinsertion pointLegend

Legend cell border insertion point wasted space

Legend cell border insertion point wasted space

P1.1

P1.2

P1.3

P1.1

P1.2

P1

P1

P1

P1

P1.2

P1.3

P1.1

P1.1

P1.2

P1.1

P1.2

P1.3

P1.3

P1.1

P1.2

P1.3

P1.1
P1.2

P1.3

(c) Introducing a second row leads to a lower amount of wasted space, but still some of it
remains. Increasing the number of rows would improve space saving.

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

Panel

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1) (row: 0, col: 2)

Px.x

GridBagLayout

(row: 0, col: 0) (row: 0, col: 1)

(row: 1, col: 1)

Px.x

cell border wasted spaceinsertion pointLegend

Legend cell border insertion point wasted space

Legend cell border insertion point wasted space

P1.1

P1.2

P1.3

P1.1

P1.1

P1.1

P1.2

P1.3

P1.2

P1.2 P1.3

P1

P1

P1.1

P1.2

P1.3

P1

P1.1

P1.1

P1.2

P1

P1.3P1.2

P1.3

Figure 4.4: Panels to be arranged (2).

To solve this problem, the Layout Module defines a constant amount of pixels for rows and
columns. This results in a grid with equally sized cells that can be represented by a two-
dimensional integer-array. Colspan and rowspan as well as insertion points can easily be
calculated. Furthermore, debugging is simplified since the grid is made visible through its
introduced representative integer-array.

44

Chapter 4 Layout Module

4.5.1 The Grid

As already mentioned, the Layout Module defines a constant width for all rows and a con-
stant height for all columns. This is done for each Panel whose children have to be lay-
outed. Therefore, the attributes of the corresponding GridLayout are set accordingly.
The rowHeight and colWidth attributes are defined in the properties-file. The numbers of a
Panel’s rows and columns, which are set with the aid of the row and col attributes, depend
on the collocation of the Panels’ children. Resulting in a grid with equally sized cells, this
well defined grid offers the possibility to calculate rowspan and colspan, that are required for
each Widget. In order to guarantee this functionality, the Widget’s (W) dimension and
LayoutData must fulfill the Equations 4.8 and 4.9:

colspan =

⌈
Wwidth + WpaddingLeft + WpaddingRight + WborderWidthLeft + WborderWidthRight

columnWidth

⌉
(4.8)

rowspan =

⌈
Wheight + WpaddingBottom + WpaddingTop + WborderWidthBottom + WborderWidthTop

rowHight

⌉
(4.9)

To guarantee enough space for the widget within the allocated grid-cells, colspan and rowspan
are rounded up to the next larger integer value. If these equations are satisfied, a defined
number of equally sized cells is allocated to each widget. This offers the possibility to represent
a Panel by introducing a temporary two-dimensional integer-array, that is called grid in the
further writing. The bounds of the grid are calculated as described in the Equations 4.10
and 4.11, where C represents the children of the Panel.

maxCols =

∑
Ccolspan

columnWidth
(4.10)

maxRows =

∑
Crowspan

rowHight
(4.11)

Equations 4.10 and 4.11 guarantee that all child Widgets that have to be placed can be
arranged next and below to each other in the grid if needed.

Child Widgets that are already processed are marked in the parent Panel’s grid represen-
tation. This is done by assigning defined integer values to the corresponding grid-cells. The
different values that can occur in this grid are listed in Table 4.2. The resulting grid offers
the possibility to search for patterns that represent possible insertion points . These insertion
points are evaluated in terms of size consumption and one of them is chosen for a further
Widget insertion.

45

Chapter 4 Layout Module

Table 4.2: Grid values.

Marker Name Description

0 free
A 0 denotes a cell that can be used to place a further Wid-
get.

1 occupied
A 1 denotes a cell that is occupied by a Widget. It is
restricted for further use.

2 start point
A 2 denotes a cell that is occupied by the upper left corner
of a Widget. It is restricted for further use.

4 forbidden space
A 4 denotes a forbidden cell in the grid. No Widget may
occupy this cell. This value is only necessary in case of a
ListWidget or a Panel that traces to a Sequence.

9 out of frame A 9 denotes a cell that exceeds the Frame’s width.

Example

To give an example, the LayoutData of the Panels P1.1, P1.2 and P1.3, as they are
arranged in Figure 4.4(c), are mapped to the grid with a constant column-width and row-
height of 10 pixel each. According to the size and LayoutData displayed in Table 4.3, the
three Panels are inserted into the grid.

Table 4.3: Calculation of colspan and rowspan for the panels P1.1, P1.2 and P1.3.

left right left right

P1.1 30 px 4 px 4 px 1 px 1 px 40 px 4 colums

P1.2 40 px 4 px 4 px 1 px 1 px 50 px 5 colums

P1.3 40 px 4 px 4 px 1 px 1 px 50 px 5 colums

top bottom top bottom

P1.1 50 px 4 px 4 px 1 px 1 px 60 px 6 rows

P1.2 10 px 5 px 5 px 1 px 1 px 22 px 3 rows

P1.3 10 px 5 px 5 px 1 px 1 px 22 px 3 rows

Calculation of ColSpan

colspan

rowspan

padding

padding

border width

border width

total

width

total hight

Calculation of RowSpan

panel

hight

panel

width
Panel

Panel

As shown in Figure 4.5, Panel P1.1 is assigned a rowspan of six and a colspan of four. It is
placed at row zero and column zero. Panel P1.2 as well as Panel P1.3 are both assigned
a rowspan of three and a colspan of five. In order to be displayed completely and not being
overlapped by Panel P1.1, both Panels (P1.2 and P1.2) start at column four (note that
the grid indices are starting with zero). Vertically, Panel P1.2 starts at row zero and P1.3
at row three since the first three rows are occupied by Panel P1.2.

The wasted space results from the fact that the total height of P1.2 and P1.3 is not exactly an
integer multiple of the row width. According to their layout-data, the Widgets are aligned
within the three rows. In the current example, the two Panels are centered within the three

46

Chapter 4 Layout Module

The grid RSTMulltiNucleusRelation - Eample - 1

GridBagLayout

1 1 1 1 1 0

Legend

cell border

additional space for padding

and border

wasted space

0 9 9 9

out of frame

cell border

0 9

0 9 9 9

9 9

0 9

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 00 0 0 0 0

0 0 0 0

9 9

0 0 9 9 9

0 0 0 0

1 1 1 1

1

9 9

0 0 9 9 9

0 0 9 9 9

0 0 9 9 9

0 9 9 9

0 0 9

1

1 1 1 1 1 1 1 1

1 1 1

2 1

1 1

1 1 1 1 1 1 1

1 1 1 2 1

1 11

free space

Panel to place

occupied cell

0

0

Legend1

1 1

2

1

1 1 1

11 1 1

1

P1.2

Panel

P1.2

P1.3

P1.1

P1
P1.3

P1.1

Figure 4.5: Arranging P1.1, P1.2 and P1.3 in a grid whose cells are set to squares with a
side length of ten pixels.

rows, resulting in waste of four pixel at the top and at the bottom. This can be optimised
by lowering the height of each row.

Defining a column-width and a row-height of one pixel for each would lead to the character-
istics of an XYLayoutManager. Consequently, row and column values would represent the
x and y attributes in this case. Width and height attributes would be determined by the
widgets’ dimensions.

The grid representation of the current example is shown in Figure 4.6. It serves as fundamen-
tal instrument to calculate further insertion points, and to validate them in terms of space
consumption.

0 0 0 9 9 9

9 9

0 0 0 0 0 0 0 0

0 0 0 0 0 90 0 0 0 0 0

0 0 0 9 9 9

9 9

0 0 0 0 0 0 0 0

0 0 0 0 0 90 0 0 0 0 0

0 0 0 9 9 9

out of frame

0 0 0 0 0 0 0 0

0 0 0 9 9 9

9 9

0 0 0 0 0 0 0 0

1 1 1 0 0 9

9 9

free space

1 1 1 1 1 1

1 1 1 0 0 9

9 9 occupied cell

1 1 1 1 1 1

1 1 1 0 0 91 1 1 1 2 1

1 0 0 9 9 9

9

cell border

1 1 1 1 1 1 1 1

1 1 0 0 9 9

9 9 Legend

1 1 1 1 1 1 1

1 1 1 0 0 92 1 1 1 2 1

Figure 4.6: P1.1, P1.2 and P1.3 indicated in the representative grid of P1.

4.5.2 Insertion Points

Each Panel whose children have to be layouted is assigned a corresponding grid. The limits
of this grid are derived from the child Widgets (see Equations 4.10 and 4.11). This offers

47

Chapter 4 Layout Module

the possibility to calculate insertion points for each child. These insertion points define the
upper left corner of the corresponding grid cell.

Initially, the grid is empty and, therefore all grid-cells are set to 0 and potentially 9 to indicate
cells that exceed the right frame border. In case of a ListWidget, the 9 values indicate the
right border that is defined by the ListWidget’s width. In an empty grid, the upper left
grid cell defines the first insertion point by default. For a possible second child Widget, two
insertion points result: one next to the first placed Widget and one below to it.

In case of a large queue of child Widgets, many more insertion points can result at each
child Widget placement. One of them has to be chosen for each child Widget, and the
grid must be updated accordingly (see Section 4.6).

To find insertion points, the grid is examined for certain patterns. The search algorithm does
not differentiate between the grid values that denote an already occupied or forbidden cell.
Therefore, it treats a 1, a 2, a 3 and a 4 just the same way. The insertion points in this
chapter are illustrated by using only 0, 1 and 2 values.

In the figures below, the insertion points are marked with a bold (red) 0, and the correspond-
ing pattern is displayed in the dark-grayed boxes. Furthermore, the irrelevant zero values are
grayed, too. To illustrate the patterns for possible insertion points, the grid is filled with two
of the three Panels that were already illustrated in Figure 4.3. In the following figures, these
Panels are displayed in light gray. In order to achieve different insertion points that result
for a placement of the third Panel, the size of the first two Panels is varied in each case.
The gray down arrows at the bottom indicate that the grid does not end at the corresponding
row. It may contain further empty rows that are not displayed here.

The insertion points that can occur in an existing grid are only applicable if the Widget
that has to be placed at this insertion point does not encounter grid values greater than zero.
In other words, the Widget must fit into the free region next to the insertion point and
below it.

Empty Grid

In case of an empty grid, the upper left grid cell is always set to 0. As shown in Figure 4.7,
this grid cell is used as insertion point. If the grid is filled with at least one Panel, the value
of this grid cell is set to 2 on any case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 9

1 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 9

5 0 9

6 0 9

↓ 9

Figure 4.7: Insertion point in an empty grid.

First Row

In the first row, a 1 horizontally followed by a 0 defines the pattern for an insertion point.
As depicted in Figure 4.8, the bold (red) 0 defines the resulting insertion point.

48

Chapter 4 Layout Module

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 9

1 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 9

5 0 9

6 0 9

↓ 9

Figure 4.8: Insertion point in the first row.

First Column

In the first column, a 1 vertically followed by a 0 defines the pattern for an insertion point.
As depicted in Figure 4.9, the bold (red) 0 defines the resulting insertion point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 9

1 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 9

5 0 9

6 0 9

↓ 9

Figure 4.9: Insertion point in the first column.

Inside - 1

Inside the grid, there exist two possible patterns for insertion points. The first one to mention
is depicted in Figure 4.10. The pattern to search for is shown in the grayed cells. the bold
(red) 0 at the bottom right of the pattern denotes the insertion point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 9

1 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 9

5 0 9

6 0 9

↓ 9

Figure 4.10: Insertion point inside the grid (1).

49

Chapter 4 Layout Module

Inside - 2

The second possible insertion point pattern that can be found anywhere inside the grid but
not in the first column or row is shown in Figure 4.11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 9

1 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 9

5 0 9

6 0 9

↓ 9

Figure 4.11: Insertion point inside the grid (2).

New Column

As shown in Figure 4.12, the upper cell of the leftmost free column defines the insertion point
at a new free column.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 9

1 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 9

5 0 9

6 0 9

↓ 9

Figure 4.12: Insertion point at a new free column.

New Row

As depicted in Figure 4.13, the first cell of the topmost free row defines the insertion point
at a new free row.

If no other valid insertion points were found, these insertion points functions as failsafe. Even
if the Widget to place exceeds the maximum width, this insertion point is applicable. This
is required to continue the calculation. In this case, a structural UI model can be created
but scrolling has to be enabled.

50

Chapter 4 Layout Module

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 9

1 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 0 9

5 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9

4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 9

8 0 9

↓ 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 1 1 1 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 9

5 0 9

6 0 9

↓ 9

Figure 4.13: Insertion point at a new free row.

4.5.3 Choice of the Insertion Point

Choosing the best insertion point is a delicate issue within the Layout Module. A certain
strategy may lead towards a well looking GUI for a given set of Widgets. But for another set
of Widgets, this strategy may lead towards a so-called worst case scenario. The placement-
strategy of the Layout Module aims to minimize the used area.

As already mentioned in the previous subsection, an insertion point is only applicable if
the Widget that has to be placed at the corresponding cell fits into the free cells next to
this point and below to it. A Widget that exceeds the limit of the screen represents an
exception. It is automatically placed at the insertion point at the new free row. All other
possible insertion points are discarded for this Widget.

Before starting the algorithm that searches insertion points, some grid modifications may
be necessary. Whether these modifications are required or not depends on the order of
the corresponding Panel’s children. If the Panel’s children do not have a mandatory
order, no modifications are required for the corresponding grid. If the order of the Panel’s
children is mandatory, the corresponding grid has to be modified after each Widget insertion.
The modification ensures that the given order is kept. The two cases need to be explained
separately, because the strategy of choosing the insertion point differs.

4.5.3.1 Choice of Insertion Point for Child Widgets with a Mandatory Order

In this case, the order of the child Widgets needs to be kept. Therefore, the grid is mod-
ified to prevent the Layout Module to choose insertion points that harm this order. The
modifications are illustrated in Figure 4.14.

Figure 4.14(a) illustrates a grid that represents a Panel which is already filled with two
Widgets. For further insertion, the order of the child Widgets has to be kept. Placing the
third Widget at the crossed out position in the grid at the left side would break the order
of the Widgets. To prevent the search algorithm from choosing this insertion point, the
grid has to be modified. Therefore, the grid is trimmed according to the maximum extents
of the two already inserted Widgets, illustrated by the broken line in Figure 4.14(a). The
included free cells (0-values) are changed to forbidden cells (4-values) in order to indicate
forbidden areas. Only the two insertion points illustrated in Figure 4.14(a) remain available
for the next Widget, next to the second Widget and in a new free row. This guarantees

51

Chapter 4 Layout Module

that the predefined order can be kept. Regardless of the wasted space, the insertion point
next to the second Widget gets the higher priority in this case. As already mentioned in
the previous subsection (see 4.5.2), this insertion point is only applicable if the Widget that
has to be placed fits into the remaining space. If this requirement is not met, a new free row
has to be started. In any case, further grid-modifications are required to guarantee the order
of the widgets.

2 1 1 1 2 1 1 0 0 0 0 0 9 2 1 1 1 2 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

0 0 0 0 1 1 1 0 0 0 0 0 9 4 4 4 4 1 1 1 0 0 0 0 0 9

0 0 0 0 1 1 1 0 0 0 0 0 9 4 4 4 4 1 1 1 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

resulting modified grid

2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

4 4 4 4 1 1 1 4 4 4 4 0 9

4 4 4 4 1 1 1 4 4 4 4 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

resulting modified grid

2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

4 4 4 4 1 1 1 4 4 4 4 4 9

4 4 4 4 1 1 1 4 4 4 4 4 9

2 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

next WIDGET

next WIDGET
(a) Modification of a grid, that contains two Panels.

2 1 1 1 2 1 1 0 0 0 0 0 9 2 1 1 1 2 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

0 0 0 0 1 1 1 0 0 0 0 0 9 4 4 4 4 1 1 1 0 0 0 0 0 9

0 0 0 0 1 1 1 0 0 0 0 0 9 4 4 4 4 1 1 1 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

resulting modified grid

2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

4 4 4 4 1 1 1 4 4 4 4 0 9

4 4 4 4 1 1 1 4 4 4 4 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

resulting modified grid

2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

4 4 4 4 1 1 1 4 4 4 4 4 9

4 4 4 4 1 1 1 4 4 4 4 4 9

2 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

next WIDGET

next WIDGET

(b) The Widget to be placed fits into the free space next to the second Widget.

2 1 1 1 2 1 1 0 0 0 0 0 9 2 1 1 1 2 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9 1 1 1 1 1 1 1 0 0 0 0 0 9

0 0 0 0 1 1 1 0 0 0 0 0 9 4 4 4 4 1 1 1 0 0 0 0 0 9

0 0 0 0 1 1 1 0 0 0 0 0 9 4 4 4 4 1 1 1 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

resulting modified grid

2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

4 4 4 4 1 1 1 4 4 4 4 0 9

4 4 4 4 1 1 1 4 4 4 4 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

resulting modified grid

2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 9

4 4 4 4 1 1 1 4 4 4 4 4 9

4 4 4 4 1 1 1 4 4 4 4 4 9

2 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

1 1 1 1 1 1 1 1 1 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

next WIDGET

next WIDGET

(c) The Widget to be placed does not fit into the free space next to the second Widget. Therefore, the
Widget has to be placed in a new free row.

Figure 4.14: Grid modifications for a ListWidget as well as for Panels, that are tracing
to a Sequence.

In Figure 4.14(b), the third Widget is small enough to be placed next to the two other
Widgets. The grid again has to be modified in the same way as before. It is trimmed
according to the maximum extents of the already inserted Widgets (dashed line in Figure
4.14(b)), and afterwards the included 0-values are changed to 4-values. Keeping the Widget
order, this again results in the two possible insertion points for a further Widget as depicted

52

Chapter 4 Layout Module

in Figure 4.14(b).

Figure 4.14(c) illustrates the case, when the remaining space next to the first two Widgets
is too small for the next Widget to place. To keep the Widget order, the grid is modified
again to provide an insertion point at the next free row. The remaining 0-values above
the dashed line in Figure 4.14(c) are changed into 4-values, to avoid a placement of further
Widgets in this region which would destroy the predefined order. The remaining space
above becomes a forbidden region. A further Widget would be placed next to the third
Widget or below it.

For any further Widget, the grid modification just affects the grid starting at the actual
row. Furthermore, all grid modifications are made permanent.

To sum up, each Widget can be either placed right beside the previous Widget or below
in a new free row.

4.5.3.2 Choice of Insertion Point for Child Panels Without a Given Order

All possible insertion points can be used, and a modification of the grid is not required in
this case. To put Widgets of similar size closer together, and to lower the complexity of the
resulting Widget collocation in the grid, the child Widgets are reordered according to an
entry in the properties-file. Depending on this entry, the child Widgets are ordered by area
or width, starting with the smallest or the largest.

For each Widget insertion, the search algorithm offers a certain set of insertion points.
These insertion points have to be evaluated in terms of the free space that is wasted after
an insertion of the current Widget. If only a single applicable insertion point exists, it
is chosen without any evaluation. In contrast, for more insertion points some calculations
are necessary. A temporary copy of the current grid is created for each applicable insertion
point. Further, the Widget is inserted into each copy of the current grid at one of the
calculated insertion points. Afterwards, the grid copies are trimmed according to the extents
of their containing Widgets – the currently inserted Widget included – and the included
zero values are counted. The insertion point whose Widget insertion results in a minimum
amount of zero values in the corresponding trimmed copy of the grid represents the insertion
point, which leads towards a minimum waste of free space. This insertion point is finally
chosen, and the current Widget is inserted into the original grid at this position. If two or
more insertion points result in the same amount of zero values in the corresponding trimmed
grids, the insertion point that minimizes scrolling is chosen.

Figure 4.15 illustrates this procedure. The Widget displayed on the top (next Widget)
has to be inserted into the grid illustrated on the right. Two other Widgets are already
inserted into the grid, leading to the three insertion points that are marked by a bold (red)
zero in the gray cells. One in the first column, one in the new free row and one in the first
row.

The resulting grid that is created temporarily for each insertion point is illustrated below.
The one at the left side is created for the insertion point in the first column. It results in a
trimmed grid with 11 cells that are set to zero. The two other grids contain 38 and 23 cells
that are set to zero. Therefore, the insertion point in the first column leads to a minimum
of waste space in the current example. It is finally chosen for the current Widget, and the

53

Chapter 4 Layout Module

original grid is updated according to this choice. Any remaining free area – even an area that
is surrounded by other Widgets at each side – is available for further Widget insertion.

Grid with possible insertion points

2 1 1 1 1 2 1 1 1 1 1 2 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

First column New Free Row First row

Resulting trimmed grid Resulting trimmed grid Resulting trimmed grid

2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1

1 1

1 1

2 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 2 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0

→ 23 zeros

Next WIDGET

→ 11 zeros

→ 38 zeros

Figure 4.15: Insertion point evaluation for a Widget. The Panel’s children do not have
a mandatory order and were sorted by area, smallest first.

4.6 Calculation of the LayoutData

To set a layout upon a structural UI model, the LayoutData of all of its Widgets need to
be set. The attributes, required for each Widget, depend on the currently used Layout-
Manager(see 3.2.2).

In case of using the GridLayout-manager, GridLayoutData has to be set. Only the row
and column as well as the rowspan and colspan need to be calculated. Furthermore, the
GridLayout attributes rows, cols, rowHeight and colWidth have to be set to ensure equally
sized cells within a Panel’s grid. Decisions concerning fill -type, alignment, weightx and
weighty can not be made when the layout algorithm of the Layout Module is processed. As
itemized below, these attributes are set to default values for each Widget that is layouted
by the Layout Module:

• In order to retain the calculated size of the Widgets, the fill type is set to NONE.

• In order to left align Widgets that are placed in the same column, and to top
align Widgets that are placed in the same row, the alignment attribute is set to
NORTH WEST.

• In order to retain the calculated size of the Widgets, the weightx attribute is set to 0.

• In order to retain the calculated size of the Widgets, the weighty attribute is set to 0.

Using the XYLayoutManager, the x and y coordinates of the Widget’s upper left corner
as well as its width and height need to be set in the corresponding XYLayoutData.

54

Chapter 4 Layout Module

As the number of pixels of a row and a column are known, a Widget’s GridLayoutData
can be easily converted into XYLayoutData. The GridLayoutData’s row and col at-
tribute can be converted to absolute coordinates. Together with an offset that results from
the GridLayoutData’s alignment attribute, the x and y coordinates that are required by
the XYLayoutData to determine the upper left corner of the Widget can be calculated.
The width and height attributes are obtained from the Widget itself. This provides a layout
calculation for both of the mentioned LayoutManager, using the same layout algorithm
(see Section 4.5).

Depending on the Panel type, the calculation of the LayoutData varies. In case of a
Choice or a TabControl, the layout algorithm, and especially the search for insertion
point using the grid, is not necessary. Due to the characteristics of these Panels, the Grid-
LayoutData attributes row and col of all child Widgets are set to zero.

Encountering one of the following Panels, the LayoutData is filled according to the results
of the layout algorithm:

• Panel that traces to a Sequence or an RSTMultiNucleusRelation

• Frame that traces to a Sequence or an RSTMultiNucleusRelation

• Optional that traces to a Sequence or an RSTMultiNucleusRelation

• ListWidget

The further paragraphs describe the calculation of the child Widget’s LayoutData for the
different Panel types.

Choice

Since there is only one child Widget placed in the space reserved at the same time, each
child Widget is placed at the upper left corner of its containing Panel, the Choice. There
is no need to calculate any further LayoutData.

The two different LayoutData values are set as follows:

• GridLayoutData: Row and col of each child Widget are set to zero. By default,
rowspan and colspan are set to one, and alignment is set to NORTH WEST.

• XYLayoutData: The x and y coordinates are set to zero, width and height is adapted
to the Widget’s dimension.

TabControl

Each child Panel is placed in a single tab. LayoutData is set in the same way as it is done
in case of a Choice.

55

Chapter 4 Layout Module

Frame, Panel or Optional that is tracing to a Procerural Sequence Relation or
an RSTMultiNucleusRelation

The layout algorithm calculates rowspan and colspan, as well as an insertion point for each
child Widget. The calculated data can be mapped to the data that is required by the used
LayoutManager.

• GridLayoutData: Row and col of each child Widget are filled according to the
calculated insertion point. The insertion point’s x value represents the column, and the
y value represents the row. Rowspan and colspan are set according to the default grid
width and height, the child Widget’s width and height, its padding at each side and
its border-width (see Equation 4.9 and 4.8).

• XYLayoutData: The x and y coordinates are set according to the calculated insertion
point and the default grid width and height. Width and height are set according to the
child Widget’s width and height attributes, its padding at each side and its border-
width.

ListWidget

The layout algorithm calculates rowspan and colspan, as well as an insertion point for each
child Widget. The calculated data can be mapped to the data that is required by the used
LayoutManager. This is done in the same way as described for a Frame, a Panel or an
Optional that is tracing to a Sequence or an RSTMultiNucleusRelation.

4.7 Results of Using the Layout Module

Using the Layout Module, a user interface can be created that provides both, a minimum
amount of scrolling as well as a minimum waste of free space on the display area. If a target
device provides enough screen space, the widgets are arranged in a way that scrolling can be
avoided.

Depending on the chosen cell-dimension, the distances between single Panels can vary in size.
Additionally to the predefined padding of a single Panel, this distance might be enlarged by
the remaining number of unused pixels of the corresponding row or column. This problem has
already been mentioned in 4.5.1, and is sketched in Figure 4.4. Being aware of this inaccuracy
it can be held at a minimum by choosing small grid-cells. A choice of one pixel for height and
width for each grid-cell would solve this problem. The dimension of the grid-cells is defined
in the properties-file. During the development of the Layout Module, the grid-cells were set
to squares with ten pixels for each side. This grid-cell dimension was chosen to simplify
debugging. For the final integration into the UCP framework, the grid-cell dimension has
been set to one pixel for best performance.

In the following paragraphs, an excerpt of a structural UI model, that results from the Comm-
RobShopping discourse, is chosen to illustrate the operating principle of the Layout Module.
It is handled twice, according to the strategies of ordering the Widgets. Furthermore, the
OnlineShop discourse delivers an example for the outcome of a ListWidget whose render-
ingType is set to FOLDOUT. It is presented according to two different Widget widths.

56

Chapter 4 Layout Module

The evaluation and selection of insertion points within the following examples is performed
as described in 4.5.3.

CommRobShopping – Largest First

Figure 4.16 illustrates the strategy where large Widgets are inserted first. The structural
UI model shown on the top of the figure is already ordered accordingly.

As can be seen in the figure, the Frame Frame CommRobShopping contains six Panels. The
largest Panel in this list is called Panel ShoppingLists. It contains two further Panels that
are ordered largest first, too. This is indicated through the green line in the grid representation
shown in the figure (middle). Their children are not illustrated in the structural UI model,
since this would go beyond the scope of this example. Furthermore, LayoutData and
size attributes of all children of the six Panels are assumed to be set in previous recursion
steps. Since the six Panels that are contained by the Frame are already ordered by their
size, a corresponding size calculation is assumed to have been performed previously as well.
Subsequently, the size attributes of the six Panels, together with their padding and border-
width, are used to calculate the number of grid-rows and grid-columns (colspan and rowspan)
that are required to display the included Widgets properly. Padding and border-width can
be obtained from the Cascading Style Sheet, or are set to zero as described above (see 4.5.1).
Afterwards, the insertion of the single Widgets is performed, beginning with the Panel
Panel ShoppingLists. Panel Panel ProductLists is the next in line to be inserted. Since
there is not enough space available for an insertion next to the first Panel, it is placed at the
single alternative insertion point below. The resulting grid offers plenty of space for the next
three Panels (Panel ManageShoppingList, Panel Resume and Panel FollowMe) to be placed
at the right. Finally, the last Panel, Panel returnTrolley, is placed below of the second
Panel according to the constraints of minimizing the used display area and minimizing
scrolling. The resulting grid of this insertion procedure, together with the final user interface
representation, is shown in Figure 4.16 as well.

The LayoutData that are necessary to display the Panels the way they are illustrated
in Figure 4.16 are listed in Table 4.4. This LayoutData can be easily reconstructed with
the aid of the representative grid, shown in the figure. By default, alignment is set to
NORTH WEST, and FillType is set to NONE.

Table 4.4: Calculated LayoutData for the CommRobShopping example (largest first).

Row Column

0 0 13 24 NORTHWEST NONE

Panel_ShoppingAndDestinationList 0 0 13 16 NORTHWEST NONE

Panel_InCartList 0 16 13 8 NORTHWEST NONE

13 0 5 13 NORTHWEST NONE

13 13 2 7 NORTHWEST NONE

15 13 2 7 NORTHWEST NONE

17 13 2 7 NORTHWEST NONE

18 0 2 7 NORTHWEST NONE

Row Column

0 0 2 7 NORTHWEST NONE

0 7 2 7 NORTHWEST NONE

0 14 2 7 NORTHWEST NONE

0 21 2 7 NORTHWEST NONE

2 0 5 13 NORTHWEST NONE

7 0 13 24 NORTHWEST NONE

Panel_InCartList 0 0 13 8 NORTHWEST NONE

Panel_ShoppingAndDestinationList 0 8 13 16 NORTHWEST NONE

Insertion Point
RowSpan ColSpan Alignment FillType

Panel_ProductLists

Panel RowSpan FillTypeAlignmentColSpan
Insertion Point

Panel_ShoppingLists

Panel_ManageShoppingList

Panel

Panel_ShoppingLists

Panel_ProductLists

Panel_ReturnTrolley

Panel_FollowMe

Panel_Resume

Panel_ManageShoppingList

Panel_ReturnTrolley

Panel_FollowMe

Panel_Resume

57

Chapter 4 Layout Module

Panel_InCartList

Choice_CommRobShopping Order: largest widgets first

Frame_CommRobShopping

Panel_ShoppingLists insertion order: 1

I
m

od
el

Panel_ShoppingAndDestinationList

PictureIcon_Product

Panel_ProductLists insertion order: 2

Button_GuideMeTo

4

Button_Resume

Panel_ManageShoppingList insertion order: 3

Button_ManageShoppingList

6

B tt R t T ll

Panel_FollowMe insertion order: 5

Button_FollowMe

St
ru

ct
ur

al
 U

I

Panel_ReturnTrolley insertion order:

Panel_Resume insertion order:

Button_MeetMeAt

Button_ReturnTrolley

R
es

u
lt

in
g

gr
id

te
rf

ac
e

R
es

u
lt

in
g

u
se

r
in

t

Figure 4.16: Result of the commRobShopping discourse, when large Widgets are inserted
first.

58

Chapter 4 Layout Module

CommRobShopping – Smallest First

In comparison to the previous example, the same structural UI model is now ordered the
other way round, placing the smallest Widgets first. Figure 4.17 illustrates this example.

This way, it is possible to place the four equally sized Panels side by side, in the first
row. The next in line is the Panel Panel ProductLists, which has to be placed below
of the first four Panels since there is not enough space at the right. Furthermore, this
Panel would be placed at this insertion point anyway, since the area which is occupied by
the first fife Panels would be minimized. The last Panel in this insertion queue is the
Panel Panel ShoppingLists. There is not enough space available to place it next to Panel
Panel ProductLists and, therefore it needs to be inserted at a new row. If there were enough
space to place it at the right, the two insertion points would be evaluated in terms of space a
resulting constellation would occupy. The insertion point that results in a smaller resulting
Panel is chosen.

Similarly to the example above, the LayoutData of the single Panels are listed in Table
4.5. Again, this LayoutData can easily be reconstructed with the aid of the representative
grid, shown in Figure 4.17. By default, alignment is set to NORTH WEST and FillType
is set to NONE.

Table 4.5: Calculated LayoutData for the CommRobShopping example (smallest first).

Row Column

0 0 13 24 NORTHWEST NONE

Panel_ShoppingAndDestinationList 0 0 13 16 NORTHWEST NONE

Panel_InCartList 0 16 13 8 NORTHWEST NONE

13 0 5 13 NORTHWEST NONE

13 13 2 7 NORTHWEST NONE

15 13 2 7 NORTHWEST NONE

17 13 2 7 NORTHWEST NONE

18 0 2 7 NORTHWEST NONE

Row Column

0 0 2 7 NORTHWEST NONE

0 7 2 7 NORTHWEST NONE

0 14 2 7 NORTHWEST NONE

0 21 2 7 NORTHWEST NONE

2 0 5 13 NORTHWEST NONE

7 0 13 24 NORTHWEST NONE

Panel_InCartList 0 0 13 8 NORTHWEST NONE

Panel_ShoppingAndDestinationList 0 8 13 16 NORTHWEST NONE

Insertion Point
RowSpan ColSpan Alignment FillType

Panel_ProductLists

Panel RowSpan FillTypeAlignmentColSpan
Insertion Point

Panel_ShoppingLists

Panel_ManageShoppingList

Panel

Panel_ShoppingLists

Panel_ProductLists

Panel_ReturnTrolley

Panel_FollowMe

Panel_Resume

Panel_ManageShoppingList

Panel_ReturnTrolley

Panel_FollowMe

Panel_Resume

In the first of the two examples above, Widgets are ordered largest first. The resulting GUI
is smaller than the one that results when using smallest first order. Both versions have the
same height but the smallest first version is broader. As can be seen in Figure 4.16, where
larger Widgets are inserted first, smaller Widgets (Buttons on the bottom) can be placed
in the remaining free area. In Figure 4.17, where smaller Widgets are inserted first, using
the remaining free area for larger Widgets is not possible and the three large Widgets
have to be placed in a new free row on the bottom.

Ordering Widgets by their size can minimize complexity of the resulting GUI. However, it
is hard to decide which order to take (largest first or smallest first). Which of them achieves
better results depends on the predefined screen size and on the set of Widgets that have to
be layouted. In most cases, a smaller GUI outcome can be achieved by using the largest first
order. In order to save space, the largest first strategy of ordering the Widgets is chosen by
default. The smallest first strategy can be enabled by changing the corresponding entry in
the properties file.

59

Chapter 4 Layout Module

Button_GuideMeTo

Panel_ReturnTrolley insertion order:

Choice_CommRobShopping Order: smallest widgets first

Frame_CommRobShopping

Panel_ManageShoppingList insertion order: 1

insertion order: 3

Button_FollowMe

Button_ManageShoppingList

Panel_Resume insertion order: 2

Button_Resume
U

I
m

od
el

Button MeetMeAt

4

Button_ReturnTrolley

Panel_ProductLists insertion order: 5

Panel_FollowMe

St
ru

ct
u

ra
l U

Button_MeetMeAt

PictureIcon_Product

6

Panel_InCartList

Panel_ShoppingAndDestinationList

Panel_ShoppingLists insertion order:

R
es

u
lt

in
g

gr
id

n
te

rf
ac

e
R

es
u

lt
in

g
u

se
r

in

Figure 4.17: Result of the CommRobShopping discourse, when small Widgets are in-
serted first.

60

Chapter 4 Layout Module

ListWidget Example

In terms of size-, and layout calculation, ListWidgets are handled in a special way (see
Sections 4.4 and 4.5). Furthermore, they are rendered differently, according to their render-
ingType attribute. A ListWidget whose renderingType is set to LIST is rendered the same
way as the three lists depicted in Figure 4.16 and 4.17 (Shopping List, Destination List and
In Cart List). If the renderingType of a ListWidget is set to FOLDOUT, it is rendered
as a drop down widget as shown in Figure 4.18. A renderingType set to PANEL results in
a ListWidget that is displayed as a panel that contains all element information.

Note, that the width of a ListWidget is either set to the corresponding value of the Cas-
cading Style Sheet, or to the corresponding entry in the properties-file. This is done inde-
pendently from the ListWidget’s renderingType. By contrast, the ListWidget’s height
depends on this renderingType attribute. In case of being set to PANEL or LIST, the height
is set according to the corresponding entry in the Cascading Style Sheet or in the properties-
file as well. In case of being set to FOLDOUT, the height depends on the arrangement of
the ListWidget’s inserted child Widgets. As shown in Figure 4.18, the ListWidget’s
height is set according to this arrangement. Largest Widgets first

ListWidget_ChooseProduct

Label_Product

Label_Price

Label_ProductDescription

(a) Structural UI model excerpt.

Largest Widgets first

ListWidget_ChooseProduct

Label_Product

Label_Price

Label_ProductDescription

(b) Resulting ListWidgets.

Figure 4.18: OnlineShop: The renderingType of the ListWidget is set to FOLDOUT. It
is rendered for two different widths.

The illustrated ListWidget results from an OnlineShopping discourse and its renderingType
is set to FOLDOUT. As shown in Figure 4.18(a), an entry of the ListWidget consists of
three Labels. These three Labels are arranged with respect to the predefined width of the

61

Chapter 4 Layout Module

ListWidget. According to this layout, the height of the ListWidget is set. Figure 4.18(b)
illustrates the same ListWidget rendered for two different widths. The broader outcome
offers enough space to place the first two Labels next to each other and the third below in a
new free row. The narrower outcome just offers the possibility to arrange the three Labels
below each other. The height of the two examples is set according to a single corresponding
entry. This ensures that the ListWidget can display a whole entry when it is not in fold
out state.

62

Chapter 5

Conclusion

The Layout Module has been successfully integrated into the UCP framework. It succeeded
in providing any generated structural UI with appropriate size and layout-data. Furthermore,
it enabled the optimised discourse model to structural UI model transformation (see Chapter
3.4).

Chapter 4 describes the Layout Module at the time of its integration into the UCP framework.
At this time, only the right border of a screen has been considered when choosing insertion
points. Even if there were enough unused space on the screen, Widgets could have possibly
been inserted somewhere below the screen – only accessible by using scrollbars. This problem
concerns the choice of insertion points and has been solved as described in the paragraph
below.

In case of a Panel whose children do not have a predefined order (see 4.5.3.2), an insertion
point that exceeds the screen’s height is only chosen if no alternative insertion point exists
within the displayable screen area. Therefore, another value has been introduced into the
list of grid-values of Table 4.2. When a grid is created for a single Panel, an 8 represents
grid-cells which exceed the lower limit of the target device’s screen. For each insertion point,
the algorithm that chooses the Widgets’ insertion point checks if a placement at the cor-
responding location is possible without exceeding the lower limit of the screen. Therefore,
encountering grid-cells that are set to 8 when placing a Widget into a grid, is only tolerated
if this Widget does not fit into the remaining free grid-cells.

The computable characteristics mentioned in 2.1.1 can be a valuable assistance for programs
that automatically generate GUIs. Nevertheless, these characteristics can only be used to
make decisions concerning widget placement if each widget of a screen initially has a prede-
fined size. In case of the UCP framework, the size of certain widgets – more precisely of panels
– depends on the collocation of their contained widgets and has to be calculated accordingly
afterwards. Consequently, the contained widgets have to be arranged at a time, when size
and arrangement of further potentially existing widgets are unknown. Furthermore, it is even
unknown where the current collocation is finally placed on the screen. Therefore, it is hard to
say how its widgets have to be arranged. These facts complicate an integration of aesthetic
characteristics within the UCP framework and especially in its automated placement strategy
for arranging widgets. Currently, the placement strategy of the UCP framework considers
two of the aesthetic characteristics described in 2.1.1:

63

Chapter 5 Conclusion

• Measure of screen proportion: A predefined proportion is considered.

• Measure of screen simplicity: The set of possible insertion points results in a low
amount of horizontal and vertical alignment points.

In most cases, the mathematical relationships described in 2.1.2, can hardly be integrated
in the UCP’s placement strategy. The relevant attributes required to apply most of the
mathematical relationships are defined in a Cascading Style Sheet(e.g. widget height and
width, padding, border-width, etc.), and the placement strategy has no influence on that
data. Still, upper and left justification are achieved through the particular choice of possible
insertion points and a standard alignment of NORTH WEST for each widget.

The Layout Module aims to create a layout that requires a minimum amount of screen space.
More precisely, it has the purpose to create a layout that completely fits into a predefined
screen. Contrary to the placement strategies mentioned in Section 2.2, the free screen area
remains entirely available for further widget placement. Furthermore, horizontal as well as
vertical screen extents are considered when searching possible insertion points.

Since each existing system offers the possibility for optimisation, the subsequent paragraphs
present several further approaches that could improve the performance of the Layout Module.

Optimisation of an Arranged Grid

After a Panel is processed by the Layout Module, the layout-data of its children are set and
the corresponding grid is filled accordingly. The created layout represents a first attempt
that results in a layout that fits into the target device’s screen. A possibly existing free area
within this grid offers the option for optimisation. If a child Widget fits into this free area,
a rearrangement of the Widgets may lead to a smaller amount of the used area.

Furthermore, the collocation within an automatically arranged Panel can be optimised ac-
cording to the aesthetic characteristics mentioned in 2.1.1. A setup could be implemented
that allows the designer to choose the aesthetic characteristics to be considered. Moreover,
the importance of the chosen characteristics could be set as well by assigning a weight to
them.

Note, that this optimisation can only be processed for Panels whose child Widgets do not
have a mandatory order.

Optimisation of the Placement Strategy for Child Widgets with a Mandatory
Order

The choice of insertion points for child Widgets that have a mandatory order is described
in 4.5.3.1. The algorithm can be optimised by allowing a further possible insertion point
if it does not harm the Widgets’ order. This insertion point is depicted in Figure 5.1
(encircled insertion point). A further Widget can be placed at this insertion point without
breaking the Widgets’ order if it fits into the free area that is surrounded by the dashed
line. Furthermore, a possibly remaining forbidden area (e.g. the area under the first Widget
in Figure 5.1) can be allocated to the Widget above. Instead of wasting this space, the
height of the Widget above can be adapted to the available height or the Widget can be
vertically centered.

64

Chapter 5 Conclusion

resulting modified grid

2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 0 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9

1 1 1 1 1 1 1 0 0 0 0 0 9

4 4 4 4 1 1 1 0 0 0 0 0 9

4 4 4 4 1 1 1 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 9

next WIDGET

Figure 5.1: Optimised placement strategy for child Widgets with a mandatory order.

Placement Strategy for InputWidgets and OutputWidgets

Currently, InputWidgets and OutputWidgets get their layout-data during the genera-
tion process of the structural UI model according to the corresponding transformation rule.
Children of a ListWidget represent an exception to this rule (see 4.5.3.1). If no layout-data
for InputWidgets and OutputWidgets is defined by the transformation rules, the layout-
data of these Widgets have to be set automatically as well. For this purpose, knowledge
how these Widgets belong to each other would be necessary. A solution could be one of the
approaches for placement-strategies mentioned in Section 2.2.

Calculation of the Widget’s Width

Currently, the text to be displayed by certain InputWidgets and OutputWidgets is not
available when size calculation is performed by the Layout Module. If this information were
available at this time, the width of the single Widgets could be calculated according to this
text. The default width, which is stored in the properties-file for the different Widgets,
would not be required any more. For example, the width of each Label contained by a
Panel could be obtained according to this text. Furthermore, in order to provide horizontal
uniformity, the width of each contained Label could be adapted to the broadest contained
Label.

65

List of Figures

2.1 Characteristic coordinates of a widget. 8

2.2 Grid structure of the two-column based strategy (redrawn according to [BHLV94]). 11

2.3 Two-column based strategy – example (redrawn according to [BHLV94]). . . 12

2.4 Result of the Right/Bottom strategy [BHLV94]. 13

2.5 Placement process, working with the basic shape analysis (redrawn according
to [KF93]). 14

2.6 Placement process, working with the extended shape analysis (redrawn ac-
cording to [KF93]). 15

3.1 An excerpt of a FlightBooking discourse model [KRP+10]. 18

3.2 Widget class and its specializations. 20

3.3 Panel class and its specializations. 21

3.4 InputWidget class and its specializations. 23

3.5 OutputWidget class and its specializations. 25

3.6 The structural UI tree. 27

3.7 Transformation process. 29

3.8 Generated User Interfaces [KRP+10]. 31

4.1 Structural UI tree. 34

4.2 The Layout Module. 37

4.3 panels to be arranged (1). 43

4.4 Panels to be arranged (2). 44

4.5 Arranging P1.1, P1.2 and P1.3 in a grid whose cells are set to squares with a
side length of ten pixels. 47

4.6 P1.1, P1.2 and P1.3 indicated in the representative grid of P1. 47

4.7 Insertion point in an empty grid. 48

4.8 Insertion point in the first row. 49

66

4.9 Insertion point in the first column. 49

4.10 Insertion point inside the grid (1). 49

4.11 Insertion point inside the grid (2). 50

4.12 Insertion point at a new free column. 50

4.13 Insertion point at a new free row. 51

4.14 Grid modifications for a ListWidget as well as for Panels, that are tracing
to a Sequence. 52

4.15 Insertion point evaluation for a Widget. The Panel’s children do not have
a mandatory order and were sorted by area, smallest first. 54

4.16 Result of the commRobShopping discourse, when large Widgets are inserted
first. 58

4.17 Result of the CommRobShopping discourse, when small Widgets are inserted
first. 60

4.18 OnlineShop: The renderingType of the ListWidget is set to FOLDOUT. It
is rendered for two different widths. 61

5.1 Optimised placement strategy for child Widgets with a mandatory order. . 65

67

List of Tables

4.1 Structural UI calculation order. 34

4.2 Grid values. 46

4.3 Calculation of colspan and rowspan for the panels P1.1, P1.2 and P1.3. . . . 46

4.4 Calculated LayoutData for the CommRobShopping example (largest first). 57

4.5 Calculated LayoutData for the CommRobShopping example (smallest first). 59

68

Bibliography

[BHLV94] François Bodart, Anne-Marie Hennebert, Jean-Marie Leheureux, and Jean Van-
derdonckt. Towards a dynamic strategy for computer-aided visual placement. In
AVI ’94: Proceedings of the workshop on Advanced visual interfaces, pages 78–87,
New York, NY, USA, 1994. ACM. 3, 8, 10, 11, 12, 13, 66

[GLW06] Krzysztof Z. Gajos, Jing Jing Long, and Daniel S. Weld. Automatically gener-
ating custom user interfaces for users with physical disabilities. In Assets ’06:
Proceedings of the 8th international ACM SIGACCESS conference on Computers
and accessibility, pages 243–244, New York, NY, USA, 2006. ACM. 3

[GW04] Krzysztof Gajos and Daniel S. Weld. SUPPLE: Automatically generating user
interfaces. In Proceedings of the 9th International Conference on Intelligent User
Interface (IUI ’04), pages 93–100, New York, NY, USA, 2004. ACM Press. 3

[GWW07] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. Automatically
generating user interfaces adapted to users’ motor and vision capabilities. In
UIST ’07: Proceedings of the 20th annual ACM symposium on User interface
software and technology, pages 231–240, New York, NY, USA, 2007. ACM. 3

[KBFK08] Sevan Kavaldjian, Cristian Bogdan, Jürgen Falb, and Hermann Kaindl. Trans-
forming discourse models to structural user interface models. In Models in Soft-
ware Engineering, LNCS 5002, volume 5002/2008, pages 77–88. Springer, Berlin
/ Heidelberg, 2008. 16, 19, 28

[KF93] Won Chul Kim and James D. Foley. Providing high-level control and expert as-
sistance in the user interface presentation design. In INTERCHI ’93: Proceedings
of the INTERCHI ’93 conference on Human factors in computing systems, pages
430–437, Amsterdam, The Netherlands, The Netherlands, 1993. IOS Press. 4, 10,
13, 14, 15, 66

[Kim93] Won Chul Kim. Knowledge-based framework for an automated user interface
presentation design tool. PhD thesis, Washington, DC, USA, 1993. 14

[KRP+10] S. Kavaldjian, D. Raneburger, R. Popp, M. Leitner, J. Falb, and H. Kaindl.
Automated optimization of user interfaces for screens with limited resolution.
In Proceedings of the MDDAUI’10 Workshop on Model Driven Development of
Advanced User Interfaces, 2010. 17, 18, 28, 29, 31, 66

[Mar92] Aaron Marcus. Graphic design for electronic documents and user interfaces. ACM,
New York, NY, USA, 1992. 7

69

[NTB03] David Chek Ling Ngo, Lian Seng Teo, and John G. Byrne. Modelling interface
aesthetics. Information Sciences, 152:25 – 46, 2003. 4

[Pop09] Roman Popp. Defining communication in soa based on discourse models. In
OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications, pages 829–830,
New York, NY, USA, 2009. ACM. 16

[Ran08] David Raneburger. Automated graphical user interface generation based on an ab-
stract user interface specification. Master’s thesis, Technical University of Vienna,
2008. 16, 17, 18, 19

[Sea93] A. Sears. Layout appropriateness: A metric for evaluating user interface widget
layout. volume 19, pages 707–719, Piscataway, NJ, USA, 1993. IEEE Press. 3, 11

[VG94] Jean Vanderdonckt and Xavier Gillo. Visual techniques for traditional and mul-
timedia layouts. In AVI ’94: Proceedings of the workshop on Advanced visual
interfaces, pages 95–104, New York, NY, USA, 1994. ACM. 4

[YK09] Yeonsoo Yang and Scott R. Klemmer. Aesthetics matter: leveraging design heuris-
tics to synthesize visually satisfying handheld interfaces. In CHI ’09: Proceedings
of the 27th international conference extended abstracts on Human factors in com-
puting systems, pages 4183–4188, New York, NY, USA, 2009. ACM. 3

[YNK09] Takuto Yanagida, Hidetoshi Nonaka, and Masahito Kurihara. Personalizing
graphical user interfaces on flexible widget layout. In EICS ’09: Proceedings of
the 1st ACM SIGCHI symposium on Engineering interactive computing systems,
pages 255–264, New York, NY, USA, 2009. ACM. 3

70

	Titlepage
	Introduction
	State of the Art
	User Interface Design
	Aesthetic Characteristics
	Mathematical Relationships

	Placement Strategies
	Two-Column Based Strategy
	Right/Bottom Strategy
	Shape- and Size-Analysis Based Strategy

	UCP – Unified Communication Platform
	Discourse Model
	Structural User Interface Model
	Widget Class
	LayoutManager Class
	The Structural UI Tree

	Cascading Style Sheets
	Discourse Model to Structural UI Model Transformation Process

	Layout Module
	Integrated Size Calculation and Layouting Algorithm
	Integration of the Layout Module
	StyleSheetConverter
	Size Calculation
	Size Calculation for InputWidgets and OutputWidgets
	Size Calculation for Panels

	Layout Algorithm
	The Grid
	Insertion Points
	Choice of the Insertion Point

	Calculation of the LayoutData
	Results of Using the Layout Module

	Conclusion

