
DIPLOMA THESIS

A Graphical Editor for Structural Screen Models

Submitted at the
Faculty of Electrical Engineering and Information Technology,

Vienna University of Technology
in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur (equals Master of Sciences)

under supervision of

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
Univ.Ass. Dipl.-Ing. Dr.techn. Roman Popp

Univ.Ass. Dipl.-Ing. Dr.techn. David Raneburger, BSc

by

Alexander Armbruster
Matr.Nr. 0125349

Anzengrubergasse 12/26, 1050 Wien

September 12, 2014

Kurzfassung

Die Usability von vollautomatisch generierten Graphical User Interfaces (GUIs) ist im allge-
meinen nicht befriedigend. Semi-automatisches Generieren von GUIs bedeutet, dass der Designer
manuelle Anpassungen vornehmen muss, um die Usability des generierten GUI zu verbessern. Um
den Aufwand dafür gering zu halten, sind entsprechende Tools Voraussetzung. Die Unified Com-
munication Platform (UCP) unterstützt semi-automatische Generierung eines GUI anhand eines
Diskurs-basierten Kommunikationsmodelles. UCP transformiert dieses in ein Screen-basiertes
GUI-Modell – das Structural Screen Model. Dieses Modell ist am Concrete User Interface (CUI)
level und UCP stellt einen Baum-Editor zur Verfügung, welcher zwar die Widget-Hierarchie des
Strukturellen Screen Modells darstellt, jedoch Layout- und Style-Informationen nicht graphisch
visualisiert.

Der Graphical Screen Model Editor (GSME) ermöglicht das Visualisieren und Anpassen des
automatisch generierten GUI auch von nicht-Programmierern (z.B., Designern). Insbesondere
visualisiert der GSME das Structural Screen Model (i.e., im CUI level) mit dem angegebenen
Layout und mit dem Style von einer definierten CSS-Datei. Zusätzlich ermöglicht der GSME
Verbesserungen des GUI durch direkte Layout und Style-Anpassungen am Structural Screen
Model, sowie spezielle Layout-Anpassungen, welche notwendige Zwischenschritte automatisieren.

Wir entwickelten den GSME mit Hilfe des Eclipse Modeling Projects (EMPs). Das Structural

UI Meta-Model ist das zugrundeliegende Meta-Modell des graphischen Editors. Erweitert und
angepasst haben wir diesen Editor, mittels Templates und zusätzlichen Java-Klassen um eine
vollständige Neugenerierung zu ermöglichen.

I

Abstract

The usability of fully-automatically generated Graphical User Interfaces (GUIs) is typically in
need of improvement. Semi-automatic GUI-generation, i.e, keeping the designer in the loop, allows
for improving the usability through manual customizations and requires adequate tool support
to keep the development effort low. The Unified Communication Platform (UCP) supports semi-
automatic GUI generation from high-level interaction models. In particular, UCP automatically
transforms Discourse-based Communication Models into a screen-based GUI model – the Struc-
tural Screen Model. This model is on the Concrete User Interface (CUI) level and UCP provides
a Tree Editor that does not graphically visualize layout and style information, but displays the
widget-hierarchy of the Structural Screen Model.

The Graphical Screen Model Editor (GSME) facilitates GUI customization for non-programming
experts (e.g., designers) through visualizing the automatically generated GUI. In particular, the
GSME visualizes the Structural Screen Model (i.e., on CUI level) with its layout information and
with the style information from the specified Cascading Style Sheet (CSS)-file. Furthermore, it
supports layout and style customizations through direct manipulation of the Structural Screen
Model and advanced layout features that facilitate customization through partly automating
moving and resizing a widget.

We developed the GSME based on the Eclipse Modeling Project (EMP). The Structural UI

meta-model is the underlying model for the generation of the graphical editor. Adaptations and
extensions of the GSME are persisted in templates and additional Java-classes, to support the
re-generation of the graphical editor.

II

Acknowledgements

Nicht das Beginnen wird belohnt, sondern einzig und allein das Durchhalten. Schlussendlich diese
Worte zu schreiben ist die wahre Belohnung meines Weges durch das Studium.

Ganz besonders bedanken möchte ich mich bei meinem Betreuer und Freund David Raneburger,
der mich während des Entwickelns und ganz besonders während des Schreibens dieser Diplomar-
beit bestens betreut hat und sich sogar an freien Tagen Zeit für meine Anliegen genommen hat.
Vielen Dank David, du warst wirklich eine unglaubliche Hilfe.

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl möchte ich für die vielen wertvollen Tipps und
Anregungen, für sein genaues Korrekturlesen, sowie für die schnellen Feedbacks danken. Nach
der letzten Iteration kann ich diese Arbeit guten Gewissens drucken und binden lassen.

Meinen Studienkollegen und Freunden danke ich für die (teils nächtlichen) gemeinsamen Lernexzesse
und überhaupt für die gemeinsame Zeit durch die verschiedensten Lebenssituationen.

Meinen Freunden, die mich während dieser – nicht immer einfachen – Zeit begleitet und un-
terstützt haben, möchte ich danken.

Ein herzliches Danke auch an meine Familie, dass sie mir das Studieren ermöglicht hat und mich
so gut es ging unterstützt und motiviert hat.

Nicht zuletzt möchte ich meiner Freundin Judith danken, für ihre Geduld und Unterstützung,
welche sie mir auch in den nächsten Wochen noch entgegenbringen wird.

III

Table of Contents

1 Introduction and Motivation 1
1.1 Motivation . 1
1.2 Approach . 1
1.3 Outline . 2

2 Background 3
2.1 The Unified Communication Platform User Interface Generation 3

2.1.1 The GUI Generation Process . 3
2.1.2 Discourse-based Communication Model . 4
2.1.3 The Screen Model . 5
2.1.4 UCP-Tool Support . 6

2.2 Eclipse Graphical Modeling Framework . 7
2.2.1 GMF/GEF Architecture . 7
2.2.2 Eclipse Workbench . 10

3 Graphical Screen Model Editor 13
3.1 Requirements for the GSME . 13
3.2 GSME Workbench GUI . 14

3.2.1 Layout Customizations . 17
3.2.2 Style Customizations . 23

3.3 Software Design . 24
3.3.1 Layout Features . 26
3.3.2 Style Features . 34

3.4 Requirements Satisfaction . 35

4 Results 37

5 Discussion & Future Work 41

6 Conclusion 43

A Getting Started 44
A.1 Preface . 44
A.2 Create a Screen Model Diagram . 44
A.3 Layout Customizations . 46
A.4 Style Customizations using the Properties View . 49

IV

B The Structural UI Meta-Model 51

C Sequence Diagram of the Command Execution “Stretching the Button” 54

Literature 56

V

Abbreviations

ANM Action-Notification Model

CRF CAMELEON Reference Framework

CSS Cascading Style Sheet

CUI Concrete User Interface

DoD Domain-of-Discourse Model

EMF Eclipse Modeling Framework

EMP Eclipse Modeling Project

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

GSME Graphical Screen Model Editor

GUI Graphical User Interface

HTML Hypertext Markup Language

IDE Integrated Development Environment

MVC Model View Controller

OCL Object Constraint Language

RCP Rich Client Platform

RST Rhetorical Structure Theory

SWT Standard Widget Toolkit

UCP:UI Unified Communication Platform UI Generation Framework

UCP Unified Communication Platform

UI User Interface

UML Unified Modeling Language

VI

1 Introduction and Motivation

1.1 Motivation

Graphical User Interface (GUI) development is time-consuming and error prone, so automating
this process is desirable. Model-driven software development provides the means to automatically
generate GUIs. Generating GUIs from high-level models potentially saves time and effort, but
currently has the drawback that the usability of such automatically generated User Interface (UI)s
is typically rather low [MPV11]. A major reason for the low usability is that high-level interaction
models do not specify any details on layout and style of the final GUI. This information is
completed based on heuristics during the transformation process, which does typically not lead
to the result desired by the designer.

One way to remedy this problem is semi-automated GUI generation, which keeps the designer
in the loop and allows her to customize the resulting GUI through additional manual input.
Inclusion of the human designer requires adequate tool support, to keep the development effort
low.

The Unified Communication Platform (UCP) supports fully automated GUI generation for dif-
ferent devices [PRK13], but the usability of the fully automatically generated GUIs is still not
satisfying [RWP+13]. Its transformation process allows for customizing a screen-based GUI model
(i.e., the Screen Model) before the final source code is generated. However, UCP only provides a
tree editor for the Screen Model, which makes layout and style customizations a rather tedious
task [Ran14].

1.2 Approach

The proposed approach, to include the human designer, is to provide a Graphical Screen Model
Editor (GSME) that supports layout and style customizations through direct manipulation. Such
an editor has the additional benefit that it also supports “perfect fidelity prototyping” [FPR+07]
through providing a graphical visualization of each application screen without requiring the cor-
responding application logic (i.e., application back-end).

UCP is based on the Eclipse Modeling Project (EMP), therefore we decided to use the Graphical
Modeling Framework (GMF) which is part of the EMP. Development of the GSME has been
separated in two major steps.

1

Introduction and Motivation

The first step was the visualization of the Screen Model in a diagram. This was designed to show
a graphical representation of the Screens using further information from device-dependent and
application-specific Cascading Style Sheet (CSS).

For the second step, we extended the GSME with a set of layout- and style-manipulations which
are an intersection of the Screen Model with CSS possibilities and the possibilities provided by
GMF. Additionally, we introduced a set of useful manipulations which partly automate previously
required manual adaptations and allow the designer to achieve the desired result with less effort.

Layout manipulations update the model-file directly, so the tree editor can show them immedi-
ately. Style-manipulations are stored in a separate CSS-file, this enables their re-usability.

1.3 Outline

Chapter 2 presents background information on the Unified Unified Communication Platform
UI Generation Framework (UCP:UI) whose Structural Screen Model provides the basis for the
GSME. It introduces a bike rental scenario as a running example, which is used to illustrate the
approach and the capabilities of the GSME in the subsequent chapters. Finally, it presents back-
ground information on the Eclipse Graphical Modeling Framework1, which was used to implement
the GSME.

Chapter 3 lists the requirements for the GSME. This chapter also introduces the GSME Work-
bench GUI, providing detailed information about the supported layout and style customizations
and their initiation. Subsequently we present the GSME features that were implemented to
support these customizations, including interesting aspects about the implementation. The sat-
isfaction of each requirement is presented at the end of this chapter.

Chapter 4 presents the results of this work, by comparing visualization and customization of the
Structural Screen Model using the GSME and using the Tree Editor.Furthermore, we provide the
results of computational performance measurements of two aspects, the loading time of a Screen

and the execution time of certain features.

Chapter 5 discusses the limitations and alternative possibilities. Additionally, it presents ideas
and improvements for future work.

Chapter 6 provides the conclusion of this work.

Appendix Chapter A provides a “getting started document” for facilitating the application of the
GSME.

Appendix Chapter B depicts the Structural UI Meta-model, which is the base-model of this
work.

Appendix Chapter C shows the detailed command-execution of an AutoSize Request, which
belongs to an example in Section 3.3 (i.e., Resizing by use of the GSME Pop-up bar)

1http://www.eclipse.org/modeling/gmp/

2

http://www.eclipse.org/modeling/gmp/

2 Background

This chapter provides background information on the UCP GUI Generation Framework and the
Eclipse GMF which is relevant for subsequent chapters. Section 2.1 focuses on the process of
GUI-generation as supported by the UCP and its models and tasks. Section 2.2 provides an
overview about the GMF, its dependency to the Eclipse Modeling Framework (EMF) and the
Graphical Editing Framework (GEF), and details about the architecture which are relevant for
this work.

2.1 The Unified Communication Platform User Interface Gen-
eration

The UCP supports automated generation of a GUI based on a Discourse-based Communication
Model.

We use a simple Bike Rental Application1 as a running example throughout this diploma thesis.
This application supports the following use cases: Register, Login, Rent a bike, Return a bike.

This section presents an overview about the GUI-generation process in Subsection 2.1.1 focusing
on details of its input, the Discourse-based Communication Model (Subsection 2.1.2), and on the
Screen Model presented in Subsection 2.1.3.

2.1.1 The GUI Generation Process

The GUI Generation Process supports the (semi-) automatic transformation of a Discourse-based
Communication Model to Source Code. Figure 2.1 shows a simplified version of this process,
where the tasks (rounded rectangles) perform transformations between the models/artifacts (col-
ored rectangles), which are on different levels of abstractions. Input is the Discourse-based

Communication Model, which is on the Tasks and Concepts level of the CAMELEON Ref-
erence Framework (CRF) [CCT+03]. The task Model2Model Transformation includes auto-
mated device tailoring, which considers device characteristics (e.g., screen-size). It transforms
the Discourse-based Communication Model into the Screen Model, which is device dependent
but still independent from the target-toolkit. The abstraction level of the Screen Model is Con-
crete UI. The task Model2Code transformation transforms the Screen Model into the Source

1http://ucp.ict.tuwien.ac.at/UI/BikeRental

3

http://ucp.ict.tuwien.ac.at/UI/BikeRental

Background

Code (e.g., Hypertext Markup Language (HTML)), which is on the Final UI level. For a more
detailed description of the GUI generation process, see [RPK+11, Ran14].

Figure 2.1: Simplified GUI Generation Process

2.1.2 Discourse-based Communication Model

The Discourse-based Communication Model represents the communicative interaction between
two parties and consists of three models [Pop12].

The first one is the Domain-of-Discourse Model (DoD), which specifies the objects of conversa-
tion (i.e., the objects that the two communicating parties can “talk about”) and their relations.

The second one is the Action-Notification Model (ANM), which specifies the operations that
can be performed by a communication party [Pop12].

The third one is the Discourse Model, which defines classes of possible discourses using
Communicative Acts as basic units. Communicative Acts specify the information exchanged
between the communication parties, based on DoD and ANM. Adjacency Pairs model typical
turn-takings (e.g., question-answer) and consist of an opening Communicative Act (e.g., a Re-
quest) and up to two optional closing Communicative Acts (e.g., Accept or Reject). Adjacency

Pairs are linked through Discourse Relations, which are partly based on the Rhetorical Structure
Theory (RST) [MT88]. In addition, there are Procedural Constructs like Condition or the more
complex IfUntil, which specify the flow of interaction.

Figure 2.2 shows the Discourse Model of the Login use case of our BikeRental exam-
ple. The diamond-shapes represent the Adjacency Pairs. Rounded rectangles represent the
Communicative Acts, their fill-color shows the associated uttering communication party (System
or User). Alternative is a Discourse Relation that allows for all branches to be executed con-
currently (if assigned to the User), in this case register and login. Its left Nucleus consists of
an Adjacency Pair with the opening Offer Communicative Act O1, where the System offers the
User to register. The right Nucleus consists of a Title Relation, which also allows for all sub-
branches to be executed concurrently. In this case, the left sub-branch is conditional due to the
Condition Relation. The Adjacency Pair in the condition’s Then-branch, has just an opening
Informing Communicative Act I2, which conditionally informs the User about a failed login.
The right sub-branch of the Title (i.e., its Satellite) consists of an Adjacency Pair, where
the System asks for the login-credentials, modeled through the OpenQuestion (OQ5)-Answer

(AN5) Adjacency-Pair. The opening Communicative Acts specify the so-called propositional

content, which references concepts from the ANM and the DoD and defines the interface between
User and System, for more details see [Pop12].

4

Background

Figure 2.2: Discourse Model: Login of our running example (Example: BikeRentalExtended [Ran14])

2.1.3 The Screen Model

The Screen Model provides a screen-based GUI specification on CUI level [Ran14]. It consist
of two parts, the Behavior Screen Model and the Structural Screen Model. The Behavior
Screen Model is represented as a Unified Modeling Language (UML) state-machine, which defines
all possible sequences of the Screens. The Structural Screen Model provides the basis for this
work. It defines the concrete Screens with all the graphical as well as additional meta-information
(e.g., reference to the corresponding element in the DoD, reference to the rule which created a
specific Widget).

The Structural UI meta-model defines all the graphical Elements (i.e., Widgets) with their
properties and associations, which are available for creating the Screen Model. One specializa-
tion of Widget is Container like Screen, Panel, List, etc., which can contain other Widgets.
Buttons, Labels, TextBoxes, etc. cannot contain other Widgets, they are the leaves of the
model-tree.

Figure 2.3 shows the Structural Screen Model of the login use case in a tree view. The root of a
Structural Screen Model is a Frame containing information about the screen-size (i.e., resolution).
Screens are the direct children of a Frame, and are optimized for the given resolution [Ran14].

An important attribute of Widget is Layout Data, which defines the position within its par-
ent (i.e., Container). There are different specializations of LayoutData, the XYLayoutData and
GridLayoutData. This work concentrates on the GridLayoutData, because it was the only one
used in the examples and references when this work started. Containers need the additional
attribute Layout Manager, which must fit with the kind of LayoutData of its children (i.e., con-
taining Widgets). The FlowLayout, as an exception, does not need additional layout-information
from the children. Their width and height, which are properties of the Widget, are sufficient for
this trivial layout.

Figure 2.3 also shows optional Style-properties (e.g., heading). The value is an ID which ref-
erences a predefined style in a separate CSS-file. The path of corresponding CSS-files is also
specified in the Structural Screen Model.

5

Background

Figure 2.3: Example of a Structural Screen Model

This simple example allows identifying the references between the Structural Screen Model in
Figure 2.3 and the Discourse Model in Figure 2.2. For example, the Button Offer-Accept

Constant Send Accept in the Screen Model represents the left Nucleus in the Discourse
Model. The Panel OpenQuestion-Answer OneObject mandatory fields login represents the
right Nucleus of the Alternative.

2.1.4 UCP-Tool Support

The UCP-tools are packed in a Rich Client Platform (RCP)-Application, which is based on the
Eclipse Integrated Development Environment (IDE). Eclipse is mostly written in Java. It consists
of a small Runtime-Kernel and a configurable amount of plug-ins, like build-tools, compilers, text
editor, resource explorer, problems view, console etc.

The EMF is the most important plug-in for UCP. EMF supports model-based software develop-
ment. It provides an Ecore-metamodel and a graphical editor to create a custom model. The
EMF also supports the automated generation of a simple tree editor.

6

Background

In particular, UCP provides a wizard that facilitates the creation of new projects [Š14], graphical
editors for the Discourse Model [FKP+09] and the ANM, tree-based editors for the transformation
rules and the Structural Screen Model [PRK13]. The DoD is an Ecore Model. So, the graph-
ical editor provided by EMF is sufficient. UCP applies model-to-model transformations in the
context of automated GUI-tailoring [Ran14] and model-to-code transformations for automated
source code generation (see Figure 2.1). UCP supports generating the GUI source code fully
automatically [Ran08]. UCP also generates parts of the source-code for the back-end, which runs
on a Web Server as the other interaction party, the System [PKR13]. Further details about tool
support can be found in [PRK13].

2.2 Eclipse Graphical Modeling Framework

This section introduces the architecture of Graphical Modeling Framework (GMF)/Graphical
Editing Framework (GEF) and provides information about the generation2 process of the graph-
ical editor in Subsection 2.2.1. In Subsection 2.2.2, we provide an overview of the Eclipse Work-
bench, which provides the basis for the GSME Workbench.

2.2.1 GMF/GEF Architecture

GMF is part of the Eclipse Graphical Modeling Project3, which consists of the parts
GMF-Tooling and GMF-Runtime. While GMF-Tooling provides a model-driven approach to gener-
ate standardized Eclipse graphical editors, GMF-Runtime is an application framework for creating
graphical editors using Eclipse Modeling Framework (EMF) and GEF. GEF provides a set of
libraries to develop graphical representations of a given meta-model4.

Figure 2.4 illustrates the Model View Controller (MVC)-architecture of GMF, where the
Controller, as well as the user-interaction-interface with Events, Requests and Commands can
be considered as part of the GEF. Changes to the instantiation of a specific meta-model concept
can only be done via the Controller. There is exactly one Controller, the so-called EditPart,
per instantiation. Such an EditPart is responsible for synchronizing the View (i.e., notation
model) and its model (instantiation).

Persistence of the Meta-Model is done by EMF. GMF produces a separate diagram-file in addition
to the model-file for persisting the Notation Model with properties like position, size, format,
annotations and a reference to the corresponding model.

Figure 2.5 depicts the prerequisites for generating a graphical editor, provided as Diagram

Plug-in. The Meta-Model must be provided as an Ecore Model. This can be created with
the graphical Ecore-Editor, which is part of the EMF. The Graphical Definition Model

(.gmfgraph) defines the notational representation (i.e., Figures) for the concepts specified in
the meta-model. A textual Tree Editor with the Eclipse Properties-View is provided for its
creation by EMF. The Tooling Definition Model defines the tools in the Palette-View, which
supports creating new Nodes (i.e., a Figure with a corresponding EditPart and the meta-model)
and Links between Nodes, see [Gro09]. For creating this model, the EMF provides another Tree-
Editor with the Eclipse Properties-View. The Mapping Model defines the mapping between the

2In this section, the term generation means generation of the source-code for the graphical editor.
3http://www.eclipse.org/modeling/gmp/
4This model is denoted as domain or semantic model in publications on GMF.

7

http://www.eclipse.org/modeling/gmp/

Background

Figure 2.4: Architecture of GMF/GEF[Fou]

meta-model and the notation model, as well as the structure. EMF provides a wizard, which
helps creating the Mapping Model using these three models. After all four models are provided,
the Generator Model can be created automatically. Some adjustments on this model influence
the final diagram plug-in (e.g., diagram root-element, package-prefix). Creating this plug-in, is
also an automated step providing the option to build an RCP-application.

The created Diagram Plug-in (i.e., such an automatically generated graphical editor) provides
common features as a basis:

• Selection and Zooming of all objects in the diagram-view

• Displaying a grid in the diagram-view

• A Diagram-Assistant providing Popup-Bars for creating new nodes and Connection-Handles
to create links

• Core- and Appearance-Properties-View (e.g., to edit style-properties like font-size)

• An Appearance Toolbar to edit appearance properties (e.g., font-size)

• A Menu, providing Preview, Print and Export as an image

The GMF is built on top of EMF, it supports automated generation of the source-code for a basic
graphical editor, which can be easily adapted or extended. At this point, we define the terms
adaptation and extension, which are used for adapting the editor with templates and extending
the editor via Extension Points. The term customization is reserved for manual changes during
the semi-automatic generation of GUIs from the Discourse-based Communication Models.

The basic diagram plug-in does not support the consideration of explicitly specified layout data,
because such editors are typically used for visualizing models with no information about the
layout (e.g., UML class-diagram). Visualizing layout information is a core-task of the GSME,
which means that the automatically generated editor needs to be adapted. Such adaptations are

8

Background

Figure 2.5: Generating a Diagram Plug-in with GMF, copied from [Com]

typically performed on source-code level. The problem is that they are lost in case of re-generation
of the graphical editor, after altering the meta-model.

There are several ways to adapt the graphical editor in a persistent way. The simplest possibility
is adaptation of the generated source-files. If the sources are regenerated, all manual changes are
overwritten, unless the altered methods are annotated with @generated not.

Another way for making adaptations persistent, is offered through templates (e.g., Xtend,
Xpand2). GMF uses templates for the generation of the source-files and supports using
template-files. This adaption is applied at generation-time and allows for changing many similar
classes/source-files (e.g., EditParts of Widgets).

Eclipse supports Extensions and Extension-Points, which can be defined by plug-ins and con-
tributed by plug-ins. Extension-Points provide a loosely coupled way for a modular extension
of a plug-in (e.g., adding menu-entries). An extending plug-in is typically an additional Eclipse-
project, which the GMF generation-process does not alter.

In order to change the behavior of a Widget when the user interacts with it (e.g., hover,
select, double-click), the GEF-architecture provides a pluggable contribution with so-called
EditPolicies [Van04]. An existing EditPolicy can be assigned to a specific role (e.g.,
PRIMARY DRAG ROLE) and installed to an EditPart. Figure 2.6 shows the typical communica-
tion chain in GEF. A Request Creator (e.g., a drag-drop handler) creates a Request, which is
forwarded to the corresponding EditPart. The EditPart delegates the Request to all installed
EditPolicies. If an EditPolicy supports the Request, an appropriate Command is returned,
otherwise null. Different EditPolicies can support the same Request. All returned Commands

are chained together and executed sequentially. If no EditPolicy of a given EditPart supports
the Request, the resulting Command is null, which means the EditPart does not support it and

9

Background

the mouse-pointer shows a “not-allowed” icon to the user. A Command, which alters the model,
can be interpreted as the upper blue arrow from the Controller to the Model in Figure 2.4.

Figure 2.6: Communication Chain, copied from [Van04]

The EditParts (i.e., Controller of the MVC-architecture) implement a NotificationListener,
from which the method notifyChanged(Notification notification) is called, when the EditPart

must update its View due to a corresponding semantic change within the model, which is visualized
by the blue arrow in Figure 2.4 pointing from the Model to the Controller. A notification is
also fired, when an EditPart must update its model due to a notational change in the diagram.
This notification is depicted as the upper blue arrow pointing from the View to the Controller.

2.2.2 Eclipse Workbench

The Eclipse Workbench provides many perspectives and views to facilitate different kinds of
software development. This subsection introduces the most common visual parts. Figure 2.7
depicts an overview of the Eclipse IDE. The green-framed Views, referenced by the number in
the box, are:

1 – The Toolbar Menu, which provides shortcuts for often used actions (e.g., New, Run, De-
bug, Search).

2 – The Project Explorer, which lets the user navigate through the projects, create/open
files and folders. Alternatively, a Resource Explorer can be used, which provides similar
navigation.

3 – The Editor, which visualizes the corresponding content. There are different Editors for
different kinds of Data.

10

Background

4 – The Outline View, which shows an outline of the Editor content (e.g., overview). This
can also be a graphical representation.

5 – The Properties View, which provides details of the item that is selected in the Editor or
in the Project Explorer.

11

Background

F
ig

u
re

2
.7

:
E

cl
ip

se
W

o
rk

b
en

ch

12

3 Graphical Screen Model Editor

The Graphical Screen Model Editor (GSME) visualizes the Structural Screen Model and sup-
ports its customization. The GSME consists of two diagram plug-ins and an additional plug-in
that implements a custom toolbar (i.e., the GSME Toolbar) and handles its actions. The first di-
agram plug-in provides an overview of all Screens specified in a given Structural Screen Model

and the second diagram plug-in provides a Screen-based visualization of the automatically gen-
erated GUI. Furthermore, the GSME supports several customizations.

Section 3.1 presents the requirements for the GSME, followed by argumentations about the
choice of the used architecture. Section 3.2 presents an overview of the GSME Workbench, which
hosts the diagram plug-ins, and details about the initiation of the supported customizations.
Section 3.3 presents the software design and illustrates the implementation of the customizations
(i.e., features) supported by the GSME.

3.1 Requirements for the GSME

Following, we itemize the requirements and present the rationale for the used architecture in the
GSME.

RQT1 – The GSME shall generate a graphical representation of Widgets (i.e., a diagram) for
*.structuralui files.

RQT2 – The GSME shall use the layout information specified in the Screen Model for the
graphical representation.

RQT3 – The GSME shall use the style information specified in referenced CSS-files for the
graphical representation.

RQT4 – The GSME shall use only information specified in the Structural Screen Model, in-
cluding referenced information (e.g., style-references), for the graphical representation (i.e.,
without information from an application back-end).

RQT5 – The GSME shall make manipulations (e.g., layout, size, text, color, etc.) in the diagram
persistent in either the *.structuralui file or an additional CSS-file.

RQT6 – The GSME shall provide support for restricting/constraining the allowed manipulations
(e.g., a Widget can only be laid out anew within its Container).

13

Graphical Screen Model Editor

RQT7 – The GSME shall be compatible with Eclipse Validation Framework Live Constraints.

RQT8 – The GSME shall be regenerate-able (i.e., all code modifications shall be persistent, for
new generation).

RQT9 – The GSME should support realistic figures for displaying the Widgets to make the
diagrams more intuitive.

RQT10 – The GSME should provide an interface for reporting layout customizations.

Based on these requirements, we compared three different alternatives for implementing the
GSME. The first alternative was to build the GSME from scratch. This would have been the
most flexible way, but also the most expensive one. The second alternative was to extend an
existing tool (e.g., the Eclipse WindowBuilder1) and use it as a basis for the GSME. For that,
intensive research of the specific tool and its output would have been necessary. A remaining
uncertainty, about the extent of the changes on the tool, keeps the expense difficult to estimate.
The third alternative was to use the Eclipse GMF to create the graphical diagrams. GMF
supports visualizing EMF-models (e.g., the Screen Model) and provides basic editor functionality.
The GMF is known to have a steep learning curve, but compared with the other alternatives, it
potentially allows for an efficient implementation.

The rationale for using the Eclipse Modeling Project with the EMF and the GMF, was also
driven by the already existing UCP, which hosts the GSME as a collection of plug-ins. The UCP
already contained other graphical editors (e.g., the Discourse Model Editor), which are based on
the EMF/GMF [FKP+09]. So, the EMF and GMF plug-ins were already part of UCP and the
know-how was already available in the development team and in the project.

3.2 GSME Workbench GUI

The GSME Workbench provides the GUI for the GSME. Figure 3.1 depicts an overview of the
GSME Workbench. The green rectangles are described next, referenced by their numbers in the
boxes:

1 – The Appearance Toolbar provides a standard set of style modifications (e.g., fonts and
colors).

2 – The Package Explorer shows the file-structure of all projects (i.e., plug-ins).

Figure 3.1 shows the project-structure of our Bike Rental Application running example. The
BikeRentalDiscourseExtended plug-in contains the Discourse-Based Communication

Model, automatically generated launch-configurations and optional custom data like im-
ages, rules and style-sheets.

The BikeRentalDiscourseExtended.UI.SmartPhone.common plug-in is an automatically
generated plug-in, which contains the Screen Model. It is used by the GSME as
a basis and for persisting changes. The files in the models folder are described
next. The bikeRental ScreenModel gsme.css is a Cascading Style Sheet (CSS), cre-
ated by the GSME, which is used to persist the style-changes of the widgets. The
bikeRental ScreenModel.pstm is a device-independent behavior Model, which is not to
be modified and only provided for debugging reasons.

1http://www.eclipse.org/windowbuilder/

14

http://www.eclipse.org/windowbuilder/

Graphical Screen Model Editor

F
ig

u
re

3
.1

:
G

S
M

E
W

o
rk

b
en

ch
sh

ow
in

g
th

e
ov

er
v
ie

w
d

ia
g
ra

m
(3

)

15

Graphical Screen Model Editor

The bikeRental ScreenModel.structuralui is the Structural Screen

Model, which is described in detail in 2.1.3 above. The file
bikeRental ScreenModel.structuralui diagram was generated by the GSME.

This generation must be triggered manually, with “initialize diagram file” from the
context-menu of the Structural Screen Model-file (accessible through a right-button
mouse click on the corresponding Screen Model file). The bikeRental WIMPUI.pstm rep-
resents the Behavior Screen Model. The model bikeRental.structuralui and the
bikeRental ScreenModel.pstm are intermediate models, which are weaved together re-
sulting in the Screen Model, see [RPK+11].

The BikeRentalDiscourseExtended.UI.SmartPhone.html plug-in is created automati-
cally, using the Screen Model. The task Model2Code transformation (Figure 2.1) gen-
erates the source-code of the GUI, which is persisted in this plug-in. The source code
consists of HTML-, CSS- and JavaScript-files.

The BikeRentalServiceExtended plug-in contains the application back-end.

The DeviceSpecification plug-in contains default Application-Tailored Device Specifica-
tions [KRF+09] with the corresponding CSS, which are used by UCP for tailoring the GUI
automatically.

3 – The Editor View is presented by an Editor plug-in, which visualizes the corresponding
content (e.g., a Screen Model or a Screen). Figure 3.1 shows the GSME diagram plug-
in, presenting an overview of the Frame (shown orange) with its Screens (shown blue),
arranged in a matrix with three columns and as many rows as necessary to display all
Screens. If there is more than one Frame, the Frames are displayed below each other. The
purpose of this plug-in is to allow for opening a particular Screen using the second diagram
plug-in, by double-clicking the corresponding Screen representation. The Screens have
automatically generated screen-names, which are difficult to assign to a dedicated Screen

for the designer. So, we show additional Screen-information (i.e., dimensions, number and
nesting-depth of contained Widgets) in the overview diagram.

4 – The Palette presents elementary tools, e.g., Selection, Zooming and Annotation.

5 – The Outline View provides an overview of the editor view’s content. The actually vis-
ible content of the editor view is a highlighted segment, which is indicated by the blue
semitransparent rectangle. This can also be moved, to change the visible content of the
editor.

6 – The Tabbed Property View in Figure 3.1 shows the Core Properties-tab, which rep-
resents the properties of the Widget that is selected in the Editor-View – in our case,
the Login-Screen (PartitioningState 87) of our running example. Let us introduce the
properties of the Login-Screen. Annotations are supported by every Ecore-Object (the
Ecore-class is the very super-type of the Widget class). Annotations are used, for exam-
ple, to pass information to the UCP-Layouter [RPV12]. The Behavior State links to the
Behavior Screen Model. The Content defines information about dynamic data to dis-
play, unknown at design-time (e.g., a specification of a DoD-Model concept). The Content

Specification is an Object Constraint Language (OCL) expression, evaluated on the ob-
ject in the Traces To-property (which references to a Communicative Act of the Discourse
Model). The result is stored in the Content-property. Created Through shows the id of the
transformation rule that created a specific Widget. Height and Width define the dimension

16

Graphical Screen Model Editor

of a Widget. The property Name presents a generated string that identifies the Widget. The
Parent shows the type and the name of the Widget’s parent (i.e., Container).

GMF supports tabbed Property Views, the Appearance Property Sheet can be selected
by clicking on its caption. It contains the same properties as the Appearance Toolbar.

Figure 3.2 depicts the GSME-toolbar and the Screen-based diagram.

Figure 3.2: The GSME-Toolbar and the Screen-based diagram of our running example

1 – The GSME-toolbar lets the user initiate features for customizing the size and position of
a Widget (depending on other Widgets). Furthermore, it allows for selecting the Container
of a Widget, applying the CSS-styles on the selected Widget and all containing Widgets re-
cursively. It also supports loading of previously initiated Changes (i.e., Requests) [Ran14].
A detailed description of the menu-items is presented below.

2 – The Screen-based diagram presents the detailed preview of our running example’s login-
screen (in the black box). It is the same screen as shown in the tree-view in Figure 2.3.
This preview already visualizes the layout as well as the graphical style (e.g., font, font-size,
font-color, background-color) from the given CSS and allows the designer to get a good idea
of what the final UI will look like.

3.2.1 Layout Customizations

Layout customizations change the size or position of Widgets, constrained by the Layout of
the Container (i.e., parent), by other Widgets, having the same parent (i.e., siblings) and by
contained Widgets (i.e., children). Table 3.1 summarizes these constraints.

Table 3.1: Layout constraints

1 Containers must wrap their children

2 Widgets must be within their parents

3 Widgets must not overlap with siblings

Layout customizations can be initiated in several ways, the most intuitive are direct manipulations
on the Widget. Before a customization can be applied on a Widget, it must be selected (with
the exception of using the GSME-Toolbar). Following, a short description of every customization
and their initiation is presented. They are split in resize and move customizations.

17

Graphical Screen Model Editor

Selection of a Widget

A Widget can be selected by a single left mouse-click, which is reflected by a surrounding thin
rectangle with so-called resize-handles, see Figure 3.3 (a).

(a) Resize handles (b) Resize handles, last selection

Figure 3.3: Resize handles

Selection of multiple Widgets

Multiple selection is possible by pressing CMD on a MAC (or CTRL on a PC) while selecting the
Widgets. The last selected Widget shows a small difference in its resize handles (Figure 3.3 (b)).
Some Resize with Widget and Align to Widget customizations support changes on multiple
Widgets in one step, using the last selected Widget as a reference Widget.

Selection of invisible Containers

Some Widgets have a Container with a size equal to the Widgets-size. Moving or Resizing
such a Widget, may show the unsupported operation icon (Figure 3.4) decorating the mouse-
pointer because of a violated constraint from Table 3.1 with this invisible Container. Preceding
manipulation on this Container is necessary, which requires its selection. Direct selection of
such an invisible Container is not feasible, so the GSME Toolbar offers the menu-entry Select

Container (Figure 3.2 (1)).

Figure 3.4: The unsupported operation icon

3.2.1.1 Resize Customizations

Resize customizations include changing width and height of a Widget.

Directly Resizing

Direct resizing means to grab the Widget on a resize-handle and drag it to the desired size. This
change of size is represented graphically with a gray rectangle, as well as numerically, showing
the actual width and height during the operation. Figure 3.5 (a) shows the feedback during
the resize-operation. If the designer tries to resize the Widget exceeding the available space, an
unsupported operation icon decorates the mouse-pointer. The designer is responsible to free the
space by moving or resizing other Widgets or Containers, which can be a tedious task if the
Widgets are deeply nested.

18

Graphical Screen Model Editor

(a) direct resize (b) direct move

Figure 3.5: Feedback during a direct manipulation

Resizing by use of the GSME Pop-up bar

This feature automates the tedious task of moving or resizing other Widgets or Containers

described above. The designer just selects the Widget and the direction in which to resize (i.e.,
extend the Widget by 10 pixels), the GSME automatically frees the required space, by moving
siblings and resizing parents recursively. This GSME Pop-up bar can be accessed by pressing Shift
while hovering the Widget (i.e., moving the mouse-pointer over the corresponding Widget). The
appearing pop-up bar shows the name of the operation (i.e., “resize”) in the center, surrounded
by green arrows in each direction (Figure 3.6 (a)). By clicking on an arrow, the GSME stretches
the Widget by 10 pixels in the selected direction. Resizing to the left or top direction, performs a
move and resize operation concurrently, because changing the left-top corner position of a Widget

means a move operation.

(a) Resizing (b) Moving

Figure 3.6: Customizations through the GSME Pop-up bar

Resizing by use of the Core Properties View

Resizing a Widget can be done by changing the width and/or height values of the corresponding
properties in the Properties View. After applying a new value, it is immediately verified by the
Validation Framework [Sch10], regarding the constraints from Table 3.1. Figure 3.7 shows the
result of changing the height of a Button from the Properties View. The new height of the
Widget is invalid, because of a violated constraint from Table 3.1 (e.g., the Widget would overlap
a sibling).

Resizing by use of the Toolbar Menu

Figure 3.2 (1) depicts the GSME Toolbar, which provides two advanced resize-features.

19

Graphical Screen Model Editor

Figure 3.7: Feedback from the Validation Framework

Resize is the first resize-feature, which extends the selected Widget in a specified direction.
The Resize menu-entry hides a sub-menu for MAX, TOP, RIGHT, BOTTOM and LEFT. These are the
directions in which the selected Widget can be extended, until it touches a sibling or its container.
MAX extends the Widget in all four directions.

Figure 3.8 presents an example, where the designer wants to extend the title “Login” (i.e., a
styled Label) to grab the whole width of its Container. The designer selects the Label to
resize Figure 3.8 (a), then she opens the Resize sub-menu and selects the entry Right to extend
the Label to the most right valid position. Figure 3.8 (b) shows the resulting Screen with the
extended Label.

(a) Selection (b) Resize

Figure 3.8: Example: Resize via the GSME-Toolbar

Resize with Widget is the second resize-feature, which changes the size of a Widget in a
specified plane (HORIZONTAL, VERTICAL or ALL), depending on the size of a reference Widget.
This menu-entry hides a sub-menu for selecting one of these planes. To use this feature, it
is necessary to select two or more Widgets. The last selected Widget is used as the reference,
whereas all previously selected Widgets are resized according to the size of the reference Widget

in the respective plane(s). If there is not enough empty space for the resize operation, the GSME
tries to free the space by moving and resizing other Widgets (i.e., obstacles). The GSME does
not handle the case, if a Widget to resize is an obstacle for other Widgets. Figure 3.9 shows the
corresponding error.

Figure 3.9: Error if an obstacle is a Widget to resize

20

Graphical Screen Model Editor

Figure 3.10 (a) shows an example, where the designer wants the three TextBoxes to have equal
widths, the same as the one in the middle. The corresponding multiple selection is depicted in
Figure 3.10 (b), where the reference TextBox can be identified through the black resize-handles.
After folding out the sub-menu of Resize with Widget, the designer selects the HORIZONTAL

plane. Figure 3.10 (c) shows the result of this example, where all three Widgets have the same
width.

(a) Initial layout (b) Selection (c) Resize

Figure 3.10: Example: Resize with Widget via the GSME-Toolbar

3.2.1.2 Move Customizations

Move customizations include changing the position of a Widget (specified through the x and y
coordinates of the Widget’s upper left corner).

Directly Moving

Moving a Widget can be done directly, by grabbing the whole Widget (not the resize-handles)
and dragging it to the desired position. Another possibility to move the Widget, is to use the
cursor buttons on the keyboard to move it by 1 pixel with each click. The visual feedback for
moving is shown in Figure 3.5 (b), where the numerical values reflect the top-left coordinates
x and y, relative to the Widget’s Container. The designer is not allowed to move the Widget

overlapping another one or outside its Container. This is displayed by the Unsupported Operation
Icon, which decorates the mouse-pointer. The designer is responsible to free the space manually
in advance.

Moving by use of the GSME Pop-up bar

This feature moves a Widget by 10 pixels in the selected direction, freeing the required space
for the movement automatically. The GSME Pop-up bar for moving can be accessed by pressing
CTRL while hovering the Widget, see Figure 3.6 (b).

Moving by use of the Toolbar Menu

Figure 3.2 (1) depicts the GSME Toolbar, which provides two advanced align-features and the
feature Swap Widgets, which is related to the move features.

21

Graphical Screen Model Editor

Align is the first one, which moves the selected part as far as possible (until it touches a sibling
or the border of the parent) in the selected direction. The sub-menu provides the directions TOP,
RIGHT, BOTTOM and LEFT.

Figure 3.11 presents an example, where the designer wants to align the Button “Submit” to the
right of its Container. She selects the Button to align (Figure 3.11 (a)) then she opens the Align
sub-menu and selects the entry Right to move the Button to the right most position. Figure 3.11
(b) shows the result.

(a) Select (b) Align

Figure 3.11: Example: Align via the GSME-Toolbar

Align to Widget is the second align-feature, which automatically aligns a specified edge of
the selected Widget to that of a reference Widget. This feature frees the space if necessary.
The menu-item of this feature offers the edges TOP, RIGHT, BOTTOM and LEFT. The last selected
Widget is the reference Widget.

Figure 3.12 (a) shows an example, where the designer wants the three TextBoxes to be aligned to
the left edge of the bottom TextBox. The corresponding selection is depicted in Figure 3.12 (b),
where the reference TextBox can be identified through the black resize-handles. After folding
out the sub-menu of Align to Widget, the designer selects the LEFT edge. Figure 3.12 (c) shows
the result of this example, where all three Widgets are aligned.

(a) Initial layout (b) Selection (c) Align

Figure 3.12: Example: Align to Widget via the GSME-Toolbar

Swap Widgets is a useful feature, which changes the position of two selected Widgets. This
feature requires the selection of exactly two Widgets, which must have the same Container. The
best result can be achieved, if the Widgets have the same size, so that no automated move or
resize operations are necessary to free required space. This would result in a, maybe undesired,
change of the layout. The size of the Widgets to swap is not changed.

22

Graphical Screen Model Editor

3.2.2 Style Customizations

Style-customizations change the appearance of a Widget (e.g., border, color, font). Supported
style-customizations are a subset of the styles specified in CSS 2.1, but not all of them can be
reflected by the graphical editor, see Table 3.2. For example, if the selected border-style is inset,
the GSME shows a solid bordered Widget. if the selected value fore vertical text alignment
(vertical-align), is baseline, the GSME shows the text bottom-aligned. The supported values
of vertical-align is just a subset of its CSS specification. The values sub, percentage and length
are not available.

Table 3.2: Style properties that can not be displayed correctly by the Screen-based diagram

Style-Property Value displayed

border-style

inset solid
groove solid
outset solid
double solid
ridge solid

Text: vertical-align

baseline bottom
sub n.a.
text-top top
text-bottom bottom
percentage n.a.
length n.a.

The following is divided in the initiation of the change from our custom CSS-Property-page, the
standard appearance property-page and the appearance toolbar.

3.2.2.1 CSS Property-Page

The CSS Property-Page in Figure 3.13 shows the supported style-customizations. In addition to
the standard appearance styles, the GSME supports CSS-styles like text-alignment (horizontal
and vertical), margin, and padding.

Some widget-style combinations are not supported by Web-Browsers, so they are also prohibited
by the GSME. Table 3.3 shows these combinations, e.g., a TextBox has a defined border and a
background-color, which cannot be changed. A ComboBox does not even show styles like font-size
or font-color.

3.2.2.2 Appearance Property-Page and Toolbar

Figure 3.14 shows the appearance property-page, which is a standard Eclipse plug-in. It sup-
ports common style changes like fonts, colors and the border-style. The Appearance Toolbar

(Figure 3.1(1)) provides the same possibilities to change the styles. Prohibited styles are grayed
out.

23

Graphical Screen Model Editor

Figure 3.13: Property-Page CSS

Table 3.3: Widget-Style combinations not supported by Web-Browsers

Widget Style

TextBox
border
background-color
dimension

ComboBox

border
background-color
dimension
font-size
font-style
font-weight
font-color

Button
border
background-color

3.2.2.3 “Apply CSS” on the GSME-Toolbar

The GSME-Toolbar offers the menu-entry Apply CSS, which updates the actual styles of the
selected Widget and its children recursively. In the development phase, it was an important
menu-entry for testing and debugging purposes.

3.3 Software Design

The software design of the GSME is based on the design of EMF and GMF projects. The
GSME consists of several plug-ins, containing the sources of the domain-model, the tree-view,
the diagrams as well as a custom plug-in.

24

Graphical Screen Model Editor

Figure 3.14: Property-Page Appearance

E1 – The org.ontoucp.structuralui.model plug-in contains the automatically generated
sources of the Structural UI Meta-model (see Chapter B) as well as manually added
helper-classes.

E2 –The org.ontoucp.structuralui.edit plug-in contains an ItemProvider for every
Structural UI Meta-model element. ItemProviders are adapters, used to support the
presentation of the model objects in the viewers.

E3 –The org.ontoucp.structuralui.editor plug-in consists of the sources of a fully functional
Eclipse Editor (i.e., Tree-View) and a wizard for creating a new model-file (i.e., graphical
Screen Model).

G1 – The org.ontoucp.structuralui.digest.diagram plug-in contains the sources of the
overview-diagram depicted in Figure 3.1.

G2 – The org.ontoucp.structuralui.diagram plug-in contains the core part of this work, the
Screen-based diagram. It contains the generated diagram-basis, templates to adapt this
basis and further source-files for extending the generated diagram-view.

C1 – The org.ontoucp.structuralui.diagram.custom plug-in contains the toolbar-menu
and the corresponding event-handling.

The Plug-ins E1 to E3 are generated by the EMF. Adaptations of these plug-ins, have been
done directly in the files by adding the annotation @generated not and in separate files. If the
Structural UI meta-model is changed (e.g., by adding a new type of Widget), these plug-ins
must be re-generated, whereas the adaptations are kept.

The Plug-ins G1 and G2 are generated by the GMF. Adaptations have been done by adding
templates, which define super-classes (e.g., for all the EditParts of Containers) and Widget-
specific methods. These templates are used at diagram-generation-time, to create the source-code
of the EditParts. Additional adaptations have been done by adding files. After changing the
Structural UI meta-model and re-generating the plug-ins E1 to E3, the latter described plug-
ins G1 and G2 must also be re-generated to reflect the changes in the diagrams. All adaptations
are kept, but in case of adding a Widget, adaptations in a template-file to show an individual
diagram-figure is necessary.

The plug-in C1 is created manually, it is not touched by a diagram-generation process.

25

Graphical Screen Model Editor

3.3.1 Layout Features

This subsection shows details about the implementation of customizations, which are supported
by the Screen-based graphical editor. The separation between layout and style continues in this
section, although it cannot be split strictly, because layout-relevant data is not only persisted in
the model, but also in the CSS-file. This is necessary to provide sufficient information for reflecting
the layout-customizations in the final GUI. In 3.3.1 we describe details about supported layout-
features and their implementation. In 3.3.2 we provide information about the style-features and
how they are implemented.

3.3.1.1 Supported LayoutManagers

A Layout consists of a LayoutManager as a property of a container and LayoutData as a property
of its children (e.g., Widgets in the domain of our Structural Screen Model).

The Screen Model uses a GridLayout to define position and size of the Widgets. The
GridLayoutManager consists of the number of columns and rows and the lists colWidth and
rowHeight, describing the size of the cells in pixels. GridLayoutData contains column and row,
which reflect the position of the child. The values in colSpan and rowSpan reflect the used space
in the granularity of a column or a row, which provide information to calculate the Widget’s

size. There are a few additional parameters in the GridLayoutData, which are omitted in this
work, because they where not used [Ran14].

An XYLayout consists of an XYLayoutManager as a property of the container and XYLayoutData
as a property of its children. XYLayoutData consists of the x and y values, which reflect the
coordinates of the position in pixels, relative to its parent (i.e., container).

The GSME diagram uses an XYLayout with one pixel as the smallest unit to create the layout
for a given Screen (i.e., to draw the figures, which represent the Widgets of the Structural UI
model). Using the XYLayout in the GSME instead of, a grid-based layout, was driven by the
following rationale:

• The position of a specific figure (i.e., Widget) can be determined directly without the need
of additional calculations.

• The XYLayoutData allows for easy layout verification.

• The Structural UI meta-model (see Appendix B) also supports an XYLayout to layout
the Widgets within their Containers.

• The XYLayout is a common denominator, where all other layouts of the Structural UI

meta-model can directly be calculated and vice versa.

• The diagram-canvas uses draw2d to visualize figures. Draw2d also supports a GridLayout,
but this is not compliant with the more powerful GridLayout specified in the Structural

UI meta-model.

For visualizing the Widgets (i.e., drawing the corresponding figures) in the Screen-based diagram,
it is necessary to calculate the positions (i.e., the XYLayoutData) from the GridLayout.

26

Graphical Screen Model Editor

To persist a layout customization from the Screen-based diagram into the Structural Screen
Model, the new GridLayout of the Widgets must be recalculated from the XYLayoutData and
the size of the corresponding figures (and the size of their parent-figures) from the diagram. This
calculation is described below:

• Store all x-values (x and x + w) of all direct children in a List (colWidths), avoiding
duplicates.

• Add the values 0 and the Container.width, if not existing.

• Sort the values in ascending order.

• Calculate the column and colSpan values as follows. Iterate over the colWidths and compare
with the left-bounds of the children. On a match, store the column and compare the next
values of colWidths with the right bound of that child, incrementing the colSpan for every
non-match. If the x-value from the colWidths equals the right bound (x+w) of the Widget,
the colSpan is determined. Store the values in the GridLayoutData of the corresponding
Widget.

• Calculate the distances between the values in the colWidths and store them in the
GridLayoutManager.colWidths.

• Store the number of columns in the GridLayoutManager.columns.

The row-values can be determined analogously from the y-values, which result in the complete
GridLayout.

An example is depicted in Figure 3.15, where the left side depicts the laid out Widgets including
information about both layouts. The green grid visualizes the granularity of the GridLayout,
but we use the same grid for the XYLayout and show the corresponding x and y values in red.
The blue values enumerate the columns and rows of the GridLayout. The tables in Figure 3.15
present the corresponding LayoutManagers and LayoutDatas of this simple example.

Figure 3.15: The relation between XYLayout and GridLayout

The Structural UI Meta-model also specifies an XYLayout, which can be used by the
Structural Screen Model. The GSME is not prepared for that, because it was not imple-
mented in the UCP, but it could be a trivial extension to implement support for it.

27

Graphical Screen Model Editor

3.3.1.2 Resize Features

Following, the implementation of the resize-features is presented. They are structured according
to their types of initiation. Details about the initiation are shown in 3.2.1.1.

Direct Resizing

This feature implements resizing a Widget through direct manipulation The implementation of
this feature is based on the communication chain in Figure 2.6 above, in this case the Request

Creator is the drag-handler, which creates a ChangeBoundsRequest. It is a standard Request

from GMF, which is used to alter size and position. We extended the XYLayoutEditPolicy

to check the constraints from Table 3.1, calculate the resulting layout and return the appro-
priate Commands. The ContainerXYLayoutEditPolicy of the Widget’s parent accepts this
ChangeBoundsRequest and the new LayoutManager and the LayoutData of its children are cal-
culated. These new values are stored in the corresponding Commands (SetWidgetBounds and
SetContainerBounds), which are returned and executed on the Command Stack. After execu-
tion, the corresponding EditParts get notified about the changes, which initiate refreshing the
visuals with the new values.

A second part of this feature is the resize feedback, which is shown during direct resiz-
ing (Figure 3.5 (a)). For that, we created the FeedbackEditPolicy, which receives the
ChangeBoundsRequests and shows a rectangle with the new size and position, overlaying the
Widget on a so called FeedbackLayer. To show the corresponding feedback above the Widget, a
coordinate transformations to absolute and calculations to translate and resize the shape accord-
ing to the Request, are necessary.

Resizing by use of the GSME Pop-up bar

This advanced feature implements the customization Paragraph Resizing by use of the GSME
Pop-up bar including many automatic steps involved. Let us illustrate this feature using a simple
example.

The initial layout in Figure 3.16 (a) shows a Panel with the size of 120x120 pixels and its children,
a Button and a Label. In this example, the designer wants to increase the height of the Button

by 10 pixels, but there is no space between this Button and the Label below. Also the Container
is not big enough for the new size.

If the designer did it by direct resizing, she would start with extending the Panel (b), moving
the Label (c) and finally stretching the Button (d). The GSME starts with trying to stretch the
Button by creating an AutoSize-Request, detects a violated constraint before execution, and
solves the issue by creating the next Request, and so forth. The execution of the Commands is
done in the opposite sequence (i.e., the same sequence as the designers’).

The green arrow “down” of the GSME Pop-up bar sends the Autosize-Request RQ1 extend the
height by 10 to the EditPart of the Button. The EditPart queries all its EditPolicies, until
the AutoSizeEditPolicy accepts the Request and constructs the Command (compare Figure 2.6)
for updating the model of this Button.

First of all, the AutoSizeEditPolicy determines the validity of the Request. On success, the
requested changes are checked against the constraints defined in Table 3.1:

28

Graphical Screen Model Editor

(a) initial layout (b) extending parent (c) moving sibling (d) extending Button

Figure 3.16: Resizing a Widget using the GSME Pop-up bar

1 – A Container must wrap its children: if the Widget is a Container, its size must not be
smaller than the space required by its children with the given layout. If this constraint is
not satisfied, the Request cannot be handled at all. In our case, the Widget is a Button,
which cannot contain other Widgets.

2 – A Widget must be within its parent: the new bounds (i.e., a rectangle with the upper
left edge on x, y and the width and height of the Widget) must not exceed the size of its
Container. If this is not fulfilled, the Container must be resized to satisfy constraint 1.
For that, a new AutoSize-Request must be created and handled by the EditPart of the
Container. The execution of the previous Request must wait, until this is executed and the
models have been updated. In our example, the new bounds of the Button and the bounds
of the Label do not exceed the size of the Panel, so no additional AutoSize-Request is
necessary.

3 – A Widget must not overlap with siblings: this constraint determines, if the layout
changes would lead to an overlapping of Widgets within the Container, which compro-
mises the Screen Model. In that case, the siblings of the Widget being resized, are expected
to free the space by moving in the direction with the smallest necessary movement. A new
AutoSize-Request is created to achieve this. In our example, the Request RQ2 increment
the y-value by 10 is created for the Label. The initial Request must wait until the models
are updated, and is stored in the HashMap extendedData with the key “nextRequest” of
the newly created Request.

The AutoSize-Request RQ2 for moving the Label by 10 pixels down, must also go through the
procedure described above. It would violate constraint 2, because the new bounds of the Label
exceed the size of the Panel. Another AutoSize-Request RQ3 (i.e., extend the height by 10) is
created with the previous one stored in its HashMap. This Request is successfully checked against
the presented constraints, i.e., all necessary Requests for resizing the Button have been created.

Before we continue with the description of creating the corresponding Commands, we explain a
small difference in the communication chain, shown in Figure 2.6. It matches exactly with the first
Request, created by the GSME Pop-up bar until it is forwarded to the EditPolicy. Subsequent
Requests are created directly within our AutoSizeEditPolicy, while checking the constraints
in a recursive manner. The sequence of the Requests is inverted, because the necessary change
resulting from a constraint, is a prerequisite for the previous Request. The returned Command

(Figure 2.6) corresponds to the most recently created Request. Figure 3.17 depicts the created
AutoSize-Requests in the execution order, containing the next Request as described above.

29

Graphical Screen Model Editor

Figure 3.17: Inverted order of the chained Requests

In the next step, the GSME has to recalculate the LayoutData of the Widget to alter, the
LayoutData of its siblings and the LayoutManager of their Container. Our example does not
show a Container for the Panel, we define it now as the Screen, to describe the following steps.
Figure 3.18 depicts the Commands (e.g., SetWidgetBounds) resulting from the previously created
Requests. Every solid-lined box represents a Command, the Commands in a dashed-lined rectangle
(e.g., RQ3) are chained together and put on the Command-Stack at once. The left column of
Figure 3.18, labeled as RQ3, shows the Commands to update the LayoutData (blue) of the Panel,
the LayoutManager (green) of the Screen and the ScheduleNextCommand, which carries the
Request RQ2 and the parameter waitingFor from the type EditPart. This is the EditPart (i.e,
Screen), whose model must have been updated with the layout changes before RQ2 is allowed
to be handled. We usually use the Container, where we update the LayoutManager as the
waitingFor part.

Figure 3.18: Commands resulting from the Requests

Figure 3.19 shows a UML Sequence Diagram executing the chained Commands from RQ3, which
are returned from the AutoSizeEditPolicy. The EditPart puts them on the CommandStack

for execution. The SetWidgetBoundsCommand and the SetContainerBoundsCommand update

30

Graphical Screen Model Editor

the model directly, whereas the ScheduleNextCommand does not alter the model. It uses the
method addPendingRequest of the CommandScheduler to store the waitingFor EditPart with
the Request. The data is stored in the HashMap<EditPart,Request> pendingRequests, with
the EditPart as the key and the Request as its value. Back to our example, after calling
addPendingRequest, the HashMap contains the entry <Screen, RQ2>. When a model is altered
by a Command, it notifies the EditPart about the changes. The EditPart of our Panel gets
informed about changed LayoutData and its corresponding changes of the Width and Height at-
tributes. This initiates an update of the Panel’s View, reflecting the new values. The EditPart

of our Screen gets notified about changes in the LayoutManager, refreshes its visuals and notifies
the CommandScheduler with notifyEditPartFinished about the update. The CommandScheduler

requests the stored value for the key Screen from the pendingRequests, which returns the Request
RQ2. The Commands of RQ2 are retrieved from the AutoSizeEditPolicy, which returns the middle
column of Figure 3.18. During the execution, a ProgressMonitor is shown with details about
the Command being executed.

Figure 3.19: Executing the Commands of Request RQ3

Termination Conditions. The recursive creation of the AutoSize-Requests to free the re-
quired space is either terminated by the fact that there is enough space for the current Request
or the conditions itemized below.

The given fixed size of the Frame is defined by the device-specification. If the required
space of a given Request exceeds the size of the Frame, it is terminated by constraint 1

of Table 3.1.

The SkipZone is a rectangle, which is stored in an AutoSize-Request. With every move or
resize, the SkipZone grows by calculating the bounds of a new rectangle that contains the
SkipZone and the new bounds of the Widget. This new rectangle is the new SkipZone.
In subsequent Requests, the Widget is not allowed to be placed overlapping its SkipZone.
This avoids the potentially infinite swapping of two Widgets to free space for each other.

An Obstacle is a Widget blocking the Request and must, therefore, be moved or resized, to free
space for the given Request. This Obstacle must not be a Widget being involved in the

31

Graphical Screen Model Editor

given Request. This case would lead to layout-changes that require a different algorithm
to calculate the necessary AutoSize-Requests.

These conditions are detected before executing the initial Command. Undoing the executed
Commands is also supported, to go back to the initial layout.

Resizing by use of the Core Properties View

Changes of the Width or Height from the Core Properties View are checked immediately after
applying the new value. This check is performed by a so-called validation provider, which is based
on the Eclipse Validation Framework. Strictly speaking, such a validation provider performs a
verification. It contains the Adapter-class, extended from AbstractModelConstraint, which
must override the abstract method validate(IValidationContext ctx). This parameter contains
information about the selected Widget and the changed property with the new value. With this in-
formation, the GSME checks the constraints from Table 3.1 by creating a new AutoSize-Request

and checking the integrity of the Screen Model with the resulting layout. If it fails, the dialog
presented in Figure 3.7 is shown and the values are reset to the previous ones.

If the integrity check is positive, the EditParts of the involved Widgets get notified to redraw
their visual representation.

Resizing by use of the Toolbar Menu

The result and so the implementation of the two following resize-features is quite different. The
first one “Resize” uses the surrounding Widgets and bounds to calculate the resulting size (i.e.,
new size is defined by the first violated constraint), while the second one “Resize with Widget”
creates a Request with a predefined size and frees the space if necessary.

Resize – The implementation of this feature is very simple. The GSME extends the bounds
of the Widget by one pixel and checks the constraints from Table 3.1 in a loop, until a
constraint-check fails. The last valid bounds are used to create a ChangeBoundsRequest.
Our ContainerXYLayoutEditPolicy is used to check the constraints of the resulting layout
and return the appropriate Commands. These are a SetContainerBounds for the parent
and SetWidgetBounds for the Widgets (i.e., all children of the parent), similar to the ones
presented above. This feature does not free space, it just fills empty space by extending
the selected Widget. When the sub-menu MAX is selected, extending in the single directions
follows a sequence (i.e., priority), which is left, right, top and bottom.

Resize depending on a Reference Widget – This feature requires a multiple selection of at
least 2 Widgets. The initially created Request is an AutoSize-Request to resize the first
to the n− 1 selected Widgets to the size of the nth selected (i.e., the reference Widget).
If there is not enough available space for the resize operations, the GSME tries to free the
space with subsequent AutoSize-Requests as described above. If there are many selected
Widgets to resize (i.e., extend), they might mutually prevent a successful operation. The
reason is the Obstacle presented in Subparagraph Termination Conditions on page 31.

32

Graphical Screen Model Editor

3.3.1.3 Move Features

Moving with direct manipulation

The implementation of this feature is similar to the one presented in Paragraph Direct Resizing.
A minor difference is in the implementation of the FeedbackEditPolicy, where the coordinates
x and y are displayed, i.e., the left top position relative to the moving Widget’s container.

Moving by use of the GSME Pop-up bar

A detailed description of the resizing-counterpart of this feature can be found in Paragraph
Resizing by use of the GSME Pop-up bar. We used a simple example with just a few Widgets.
Following, we provide a very similar example, where just the initial Request differs.

Example Moving by use of the GSME Pop-up bar Figure 3.20 (a) shows the initial
layout of our example, with the GSME Pop-up bar. By clicking on the blue arrow “down”,
the AutoSize-Request move down by 10 pixels is created, and delegated to the EditPart of
the Button. The subsequently created AutoSize-Requests are equal to RQ2 and RQ3 of the
example above.

(a) initial layout (b) extending parent (c) moving sibling (d) moving Button

Figure 3.20: Moving a Widget using the GSME Pop-up bar

Moving by use of the Toolbar Menu

The GSME Toolbar (Figure 3.2)(1) consists of three move-features, where Align moves the
Widget to the next obstacle in the specified direction, using the empty space. Align to Widget

moves the Widget’s edge to that of a reference, freeing the space if necessary. Swap Widgets

exchanges the position of two widgets.

Align – The implementation of this feature is very similar to its Resize-counterpart from Para-
graph Resizing by use of the Toolbar Menu. The Widget’s bounds are moved by 1 pixel in
the specified direction in a loop, until a constraint from Table 3.1 fails. It is moved, until it
“touches” another Widget or the Container.

Align to Widget – The counterpart of this feature is Resize depending on a Reference Widget.
Multiple selection is necessary, to provide a moving Widget and the reference Widget.
After selecting an edge to align to, an AutoSize-Request is created, which contains all

33

Graphical Screen Model Editor

moving Widgets an their new bounds. The GSME checks the resulting layout against the
constraints in Table 3.1 and tries to free the required space if necessary.

Swap Widgets – To use this feature, it is necessary to select exactly two Widgets, which must
have a common container. Widgets are not allowed to be “reparented”, this would violate
the integrity of the Screen Model. First of all, these prerequisites are checked. On success,
the AutoSize-Request is created, containing the Widgets and their new bounds. By select-
ing two Widgets, the new bounds of each other are known. Depending on the position and
size of the Widgets, it is possible that a termination condition, presented in Subparagraph
Termination Conditions on page 31, cancels the execution in advance.

3.3.2 Style Features

The implementations of the different style features have individual sources (i.e., Request

Creators, see Figure 2.6). Some features, i.e., font-color, can be changed on three places: via the
CSS Property-Page, via the appearance Property-Page, and via the appearance Toolbar. The
created PropertyChangeRequests to retrieve the Commands are equal. NotationalListeners no-
tify the corresponding EditPart about the changed property, which persists the new value and
updates the Views.

3.3.2.1 The Views

In the GMF diagram, the Widgets are represented through Figures (see Figure 2.4), which
visualize the Screen Model with the supported CSS-styles (Figure 3.13).

Figure 3.21 (a) depicts the structure of a simple Label, where the outer frame represents
its Container. The corresponding Figure is the SimpleWidgetStyleFigure, which imple-
ments the interface IWidgetFigure declaring a set of methods, used by their EditParts. The
SimpleWidgetStyleFigure defines the Margin (i.e., the space outside the border) of the Label.
It uses a StackLayout, which allows stacking a child on the parent (or on top of the previously
added child). It adds the BorderFigure as its child, which reflects the CSS-border (i.e., border-
width, border-style and border-color). The BorderFigure also uses the StackLayout to layout
its child, the PaddingFigure. This figure keeps the specified space inside the border free (i.e.,
padding) and is filled with the background-color of the Label. Furthermore, it is responsible
to layout the “real label” (i.e., the text) depending on the text-alignment in the horizontal and
vertical direction. We use a GridLayout with the corresponding properties to achieve this. The
LabelFigure extends the WrappingLabel, which automatically handles displaying of long text
and supports CSS-fonts (i.e., font-color, font-family, font-size, font-style and font-weight).

The example in Figure 3.21 (b) shows a Label with the text “Rent a bike”. The text is
horizontally aligned to the left, and vertically aligned to the middle. There is no padding

specified, the background-color is light blue. A thick, solid, light-gray border is visible and a
margin in all directions is shown.

There are several Figures for the different Widgets, but their structure is very similar. E.g.,
the Button uses a SVGFigure instead of the BorderFigure, which shows the image of a typical
button.

34

Graphical Screen Model Editor

(a) Visualized Label including style-attributes (b) Detailed layout of the Label

Figure 3.21: Visual representation of a Label through its Figure

3.3.2.2 CSS Property-Page

This property page (Figure 3.13) provides an overview about all supported style-customizations.
It consists of several classes, where the CSSPropertySource implementing the IPropertySource
does most of the work. It defines the property descriptors, which can be seen as the lines in
the property page. Property descriptors can be instantiated from different specializations (e.g.,
TextPropertyDescriptor, ComboBoxPropertyDescriptor). For the properties Margin and Padding,
a PropertyDescriptor containing a nested PropertySource, the CSSArrayPropertySource with a
property descriptor for every direction (bottom, left, right and top), was created.

Changes of a style-property creates a PropertyChangeRequest, which notifies the corresponding
EditPart to handle the update.

3.3.2.3 Appearance Property-Page and Toolbar

These two possibilities for changing the styles, create PropertyChangeRequests directly. The
corresponding EditPart gets notified and handles the update.

3.4 Requirements Satisfaction

In the following, we evaluate the satisfaction of the Requirements that are presented in Section 3.1.

RQT1 – The GSME shall generate a graphical representation of Widgets (i.e., a diagram) for
*.structuralui files.

This Requirement is fulfilled through both diagrams of the GSME. The Overview dia-
gram presents all the Screens and the Screen-based diagram presents the content of the
Screens (i.e., all their Widgets). The information is used from the Screen Model (i.e., the
*.structuralui-file).

RQT2 – The GSME shall use the layout information specified in the Screen Model for the
graphical representation.

This Requirement is fulfilled, because the Screen-based diagram of the GSME uses the
LayoutManager of the Container and the LayoutData of all Widgets to provide a layout-
correct graphical representation of the Screens.

35

Graphical Screen Model Editor

RQT3 – The GSME shall use the style information specified in referenced CSS-files for the
graphical representation.

This Requirement is fulfilled, because the GSME decorates the Widgets using a referenced
set of CSS-styles, where the id of the CSS-style is annotated in the model, and the definition
of the style is specified in a CSS-file (its location and name is part of the Screen Models
content).

RQT4 – The GSME shall use only information specified in the Structural Screen Model, in-
cluding referenced information (e.g., style-references), for the graphical representation (i.e.,
without information from an application back-end).

This Requirement is fulfilled, because the GSME visualizes the Widgets without the need
of an application back-end. Static data that is defined in the Screen Model, is displayed in
the Widgets. Dynamic data that is usually provided by the back-end in combination with
previous user-input, is replaced with other information to help the designer identifying the
Widget.

RQT5 – The GSME shall make manipulations (e.g., layout, size, text, color, etc.) in the diagram
persistent in either the *.structuralui file or an additional CSS-file.

This Requirement is fulfilled, because using the features, presented in Section 3.3, may alter
layout and style of the Structural Screen Model. Layout-changes are persisted directly in
the Screen Model and style-changes are persisted in a newly created CSS-file.

RQT6 – The GSME shall provide support for restricting/constraining the allowed manipulations
(e.g., a Widget can only be laid out anew within its Container).

This Requirement is fulfilled, because the GSME restricts manipulations, layout-constraints
are defined in Table 3.1. Style constraints depend on the type of Widget. They are specified
in Table 3.3.

RQT7 – The GSME shall be compatible with Eclipse Validation Framework Live Constraints.

This Requirement is fulfilled, because due to the choice of using GEF/GMF, the Eclipse
Validation Framework is supported. the GSME uses its Live Validation when the designer
alters the width or height value in the properties view.

RQT8 – The GSME shall be regenerate-able (i.e., all code modifications shall be persistent, for
new generation).

This Requirement is fulfilled, because adaptations on the GSME diagrams are persisted in
severals ways, like described in Section 3.3. Therefore, the code of the GSME is robust
against re-generation.

RQT9 – The GSME should support custom figures for displaying the Widgets to make the
diagrams more “fancy”.

This Requirement is fulfilled, because the Widgets have individual figures. ComboBoxes

and Buttons are given a realistic representation, to get an immediate impression about the
resulting Screen.

RQT10 – The GSME should provide an interface for reporting layout customizations.

This Requirement is fulfilled, because an interface to persist model-changes was imple-
mented, where the source of initiation (e.g., Pop-up bar, Toolbar), the trigger (manually or
automatically) and the serialized Request-Object is stored in a ChangeLog.

36

4 Results

The main result of this diploma thesis is the prototypical implementation of the GSME in form of
Eclipse plug-ins, which satisfies all requirements specified in Section 3.1. In particular, we present
a visualization example and a customization example for a comparison between the GSME and
the Tree Editor. Furthermore, we present the results of computational performance measurements
of certain features of the GSME.

GUI visualization and customization: GSME vs. Tree Editor

Figure 4.1 shows the visualization of a Structural Screen Model excerpt using the GSME and
the Tree Editor. This figure shows that the GSME visualizes the Widgets graphically with
corresponding figures, the Layout and the Style in contrast to the Tree Editor. Thus, the GSME
provides a visual impression of the final GUI, even without an existing back-end.

(a) Tree-view (b) GSME-diagram

Figure 4.1: Snippet of the Login-Screen of our running example

Visualizing the Structural Screen Model through the GSME means to visualize all the information
the Tree Editor shows (the Structural Screen Model containing the Widget-hierarchy, layout
information and style-ids). Additionally, the GSME visualizes the style-properties specified in a
given CSS-file that are referenced through the style-ids. All visualized data is either static and
specified in the Screen Model, or dynamic data, which will be provided by the application back-end
at run-time. Such dynamic data is visualized based on information specified in the Text-attribute

37

Results

of the Widget to visualize (e.g., the TextBox labeled “username” in Figure 4.1 (b)). If no such
information is available, a place-holder (i.e., <...>) is inserted and the Widget can be identified
through its properties, visualized by the Property-View. Visualization and Customization of this
intermediate Structural Screen Model, allows for developing the GUI in iterations even without
the need for an application back-end (see [RPK+14, RKP+14]). Furthermore, the GSME allows
for decoupling the development of the GUI and the application back-end, which can in principle
be developed in parallel.

In addition, the GSME facilitates layout customizations. Direct layout manipulations can be per-
formed using the Tree Editor, too. Trivial manipulations that do not change the LayoutManager

of the Container can be done in one step, even from the Tree Editor. An example is depicted
in Figure 3.11, where a Button is laid out in the left column of its parent. It can be moved
to the empty right column, which has the same size. From the Tree Editor, the Button can be
moved by altering the column-attribute of the Button’s GridLayoutData from 0 to 1. Using
the GSME, there are several ways to move the Button. It can be done by direct manipulation
with the mouse or the cursor-keys, or by the GSME Pop-Up bar. The most convenient way is to
use the Align-feature of the GSME Toolbar.

Usually, a layout-change requires recalculation of the Container’s LayoutManager and the
LayoutData of all its children (see 3.3.1.1), because the empty target-space often differs from
the required space. Using the Tree Editor, this layout-calculation has to be done manually and
the resulting values have to be put in the corresponding fields of the LayoutManager and the
LayoutData. This task is difficult and error-prone. The GSME facilitates such customizations
through automating the recalculation of the layout.

Style customizations cannot be done by the Tree Editor at all, it just shows a reference-ID (e.g.,
thinBorder in Figure 4.1) for which the style is specified in one of the predefined CSS-files. The
GSME reflects the specified style of the Widgets and supports their customization directly from
the properties-view.

Computational performance of the GSME

We measured two types of computational performance. First, we measure the loading time
required for visualizing (i.e., rendering) a given Screen. Second, we measure the execution time
of resize-features. These measurements have been performed with a MacBook Pro, 2.6 Ghz
dual-core Intel Core i5, 8 GB 1600 MHz memory, 256 GB PCIe-based flash storage.

The overview-diagram of the GSME allows for the selection of a Screen for visualizing its content
in the Screen-based diagram. This rendering of a Screen (i.e., the creation of the Screen-based
diagram) takes a certain amount of loading time. We define this loading time from initiating the
task “open the Screen” until the new diagram with the corresponding Screen is completely
visible to the user.

Table 4.1 presents three examples of Screens with different content-properties (i.e., nesting-
depth and number of Widgets) and their loading times. The nesting-depth reflects the number
of hierarchy levels.

The Screen PartitioningState 1 (depicted in Figure 4.2 (a)) contains 13 Widgets in 3 hierarchy
levels. PartitioningState 87 (depicted in Figure 4.3 (a)) also contains 13 Widgets, but the maxi-
mum nesting-depth of this Screen is 5. The loading time of both Screens takes 7 seconds each.
The more complex Screen PartitioningState 13 visualized in Figure 4.4 (a) contains 36 Widgets

38

Results

Table 4.1: Screen loading time

Screen
Maximum Number of Loading

nesting-depth Widgets time

PartitioningState 1 (Figure 4.2 (a)) 3 13 7s

PartitioningState 87 (Figure 4.3 (a)) 5 13 7s

PartitioningState 13 (Figure 4.4 (a)) 5 36 11s

and a maximum nesting-depth of 5 (like PartitioningState 87). This Screen needs 11 seconds
to be rendered. These results indicate that the loading time depends more on the number of
Widgets than on the maximum nesting-depth.

(a) Initial Screen (b) Customized screen after executed resize

Figure 4.2: Screen PartitioningState 1 of our running example

(a) Initial Screen (b) Customized screen after executed resize

Figure 4.3: Screen PartitioningState 87 of our running example

The GSME Pop-up bar provides access to the move and resize features, which can be used for
layout customizations. These features automate the task “free the required space” if necessary.
A simple example is presented in Paragraph Resizing by use of the GSME Pop-up bar on page
28, where one manual step with the GSME Pop-up bar triggers two additional steps to free the
required space, which are automated by the GSME. The execution time for executing such a
feature is defined from initiating the feature by the mouse-click, until the diagram shows the
desired layout changes (e.g., the Widget with the new height).

Table 4.2 shows three examples of resizing a Widget, which need a different number of additional
operations (i.e., move and resize) to free the required space. Figure 4.2 (a) visualizes the initial
layout of the Screen PartitioningState 1 and (b) shows the customized layout after executing the
feature increasing the height. To increase the height of the Button in PartitioningState 1, one

39

Results

(a) Initial Screen (b) Customized screen after executed resize

Figure 4.4: Screen PartitioningState 13 of our running example

move operation and 3 resize operations are necessary, which take 1.8 seconds for execution.

Table 4.2: Execution time comparison

Screen Nesting-depth
Operations Execution

Move Resize time

PartitioningState 1 (Figure 4.2) 3 1 3 1.8s

PartitioningState 87 (Figure 4.3) 5 3 5 3.9s

PartitioningState 13 (Figure 4.4) 5 6 5 6.3s

Increasing the height of the TextBox in PartitioningState 87, which is depicted in Figure 4.3 (a),
takes 3.9 seconds and requires 8 operations. The resulting layout is presented in Figure 4.3 (b).

Applying the feature increasing the TextBoxes height on the more complex Screen Partition-
ingState 13, in Figure 4.4 (a), needs 11 operations and 6.3 seconds. Figure 4.4 (b) shows the
layout after executed resizing.

40

5 Discussion & Future Work

This section discusses limitations of the current GSME implementation and highlights potential
topics for future work.

Improving and extending the GSME

The GSME facilitates a preview of the final GUI without the need of an existing back-end
application. A limitation of this preview is that it does not offer dynamic data, because this data
can only be provided by the back-end application. However, the GSME offers static data (e.g.,
the title, labels, default-values), which is typically sufficient to provide a realistic preview of the
final GUI.

Another limitation of the GSME is that it currently does not support the simulation of the
GUI behavior, which was actually out of the scope of this diploma thesis. Simulating the GUI
behavior would be a beneficial extension of the already existing GSME as it would allow for an
early evaluation of the application. In principle, information about possible sequences and their
initiation is specified in the Behavior Screen Model and already available. Pressing a Button

can trigger opening a new diagram with the corresponding Screen. For that, a mode-switch
could be implemented, to select between editing and simulation mode. One further limitation of
the current implementation of the GSME in this context is that it takes a few seconds to render
a Screen in a diagram view (see Chapter 4).

A potential solution for this performance problem would be to use Standard Widget Toolkit
(SWT) directly, without the overhead of GEF/GMF. SWT is a library for creating GUIs in
Java. The visualization of the Widgets could possibly be implemented more efficiently, but this
approach would require additional effort for basic implementations like listeners to support drag
and drop, providing information about the dragged part, the position, creating a feedback-figure,
etc., to facilitate customizations. Additionally, the GridLayout of SWT uses different properties
to specify the layout than the GridLayout of the Structural Screen Model. This means that
layout specified in the Structural Screen Model needs to be mapped to an SWT layout (e.g.,
SWT GridLayout or XYLayout). The classes for transforming the Structural Screen Model
GridLayout into an XYLayout, developed and implemented in this work, could be used in this
solution as well.

Currently, the implementation of the layout transformation, considering the layout-constraints,
is persisted in separate files of the plug-in org.ontoucp.structuralui.diagram. A similar
calculation is used in several parts of the Unified Communication Platform (UCP). In future work,

41

Discussion & Future Work

these functions could be combined into a common part of the UCP, to facilitate its maintenance.
For example, these calculations could be moved directly into the implementation of the Structural
UI Meta-Model, because they just need the LayoutManagers of Containers and the LayoutData
of the Widgets.

The computational performance of the GSME move and resize features depends on the number
of operations (i.e., intermediate Requests), which are needed to free the required space. The
execution time of these features consists of the time needed for the iterative constraint-checks,
the creation of Requests and their Commands, and the execution of the Commands with updating
the visuals (i.e., Figures) for every intermediate Request. The computational time could be
reduced by calculating the finally resulting layout and creating one single Request that performs
all the layout changes in one execution.

Customization persistence

As stated in [Ran14], the problem of customizing the Structural Screen Model on the CUI-level
is that these customizations are lost in case of regenerating the Screen Model, because the previ-
ous Structural Screen Model and the CSS-file are overwritten. Thus all customization performed
through the GSME are lost. Customizations can be made persistent if they are specified in the
form of a transformation rule [KFK09, RPK13], because such customizations are applied while
generating the Screen Model (see Figure 2.1). To additionally make customizations performed
through the GSME persistent, such customizations need to be saved explicitly and re-applied
again after the Screen Model has been re-generated. We already created a Changes Model to
store the customizations with the corresponding Requests in a separate file [Ran14], which sup-
ports developing the GUI in full iterations, in principle. The drawback of this solution is that
such customizations cannot be taken into account by UCP’s automated device tailoring approach
[Ran14], because they are applied only after the tailored Screen Model has been generated.

Customization propagation

GUI Widgets that trigger the same functionality are potentially contained in more than one
Screen (e.g., a log-out Button). Customizations of such Widgets typically have effects on more
than one Screen, the same customizations have to be repeated manually several times. A solution
for this problem would be to create and store such a customization in a dedicated transformation
rule, instead of storing the Requests in our Changes Model. Such a transformation rule should
be created automatically based on customizations performed through direct manipulations. Ad-
ditionally, the designer should be enabled to select the “scope” of such transformation rules. The
scope could, for example, be either a given Screen or all Screens of a given Structural Screen
Model.

Tool use

So far, the GSME has only been used by expert users (i.e., the author of this thesis and his
supervisors). A usability evaluation of the tool was out of the scope of this diploma thesis.
However, we created a “getting started” document (see Chapter A) to provide an introduction
to the graphical diagrams, their features and how to use the GSME. This document is intended
to facilitate using the GSME for novice users in the future.

42

6 Conclusion

In the course of this diploma thesis we developed the tool GSME, which intends to support the
designer to improve the usability of automatically generated GUIs. Such improvements alter
the Structural Screen Model (on the CUI level) directly, which is an intermediate output of the
generation process. In particular, the GSME provides an overview of the Frames with all Screens,
which allows for selecting a specific Screen to be visualized. Furthermore, the GSME facilitates
the visualization of the Screens, including the layout and style information without the need
of an application back-end. Additionally, it allows the designer to customize the layout and the
style through direct manipulation and additionally facilitates customization through advanced
features.

43

A Getting Started

A.1 Preface

The Graphical Screen Model Editor (GSME) is a collection of plug-ins, containing two graphical
editors (i.e., diagrams).

The first diagram is the overview-diagram, which provides an overview of the Screen Model.
It depicts the Frames with their containing Screens with the purpose to select a Screen. The
content of the selected Screen is visualized with the second diagram, i.e., the StructuralUI-
Diagram (or Screen-based diagram), which is a WYSIWYG editor providing a representation
of the automatically generated Screen Model. Furthermore, it is a toolkit supporting a set of
customizations.

A.2 Create a Screen Model Diagram

Initialize Diagram File

In the Package Explorer, select the previously created Screen Model

“yyy ScreenModel.structuralui”. In the corresponding context-menu, you can find “Ini-
tialize model-diagram diagram file” (see Figure A.1). This command renders the Overview
Diagram showing all screens of the model.

44

Getting Started

F
ig

u
re

A
.1

:
C

o
n
te

x
t

m
en

u
:

in
it

ia
li

ze
m

o
d

el
-d

ia
g
ra

m
fi

le

45

Getting Started

Overview Diagram

On the top of Figure A.2, you can see the name of the Frame. The boxes below represent the
Screens in a table with three columns and as many rows as necessary to show all Screens within
this Frame. If more than one Frame exists, further Frames are displayed in separate blocks below.

Double-clicking a Screen, visualizes the selected Screen with the StructuralUI diagram.

Figure A.2: Overview diagram

StructuralUI Diagram

This is the main part of the GSME, which visualizes a graphical representation of a single Screen,
see Figure A.3. It includes all layout information from the Structural Screen Model and the
style information from registered CSS-files.

Layout customizations are stored back in the *.structuralui-file, overwriting the initial data.
Additional helper-information about the layout are stored in a newly created CSS-file, which
also contains the style customizations. This file is stored in the model-folder with the name
modelname gsme.css.

A.3 Layout Customizations

Definition of Customizations

The GSME provides a set of layout customizations, which can be applied on Widgets within a
Screen. A customization is defined to be manually initiated, either directly on the Figure (i.e.,

46

Getting Started

Figure A.3: StructuralUI diagram

the graphical representation of a Widget) or via the menu (i.e., toolbar or pop-up bar). An
automatically generated Request (i.e, an AutoSizeRequest) is initiated by another Request or
a customization and a certain condition. This condition could be “lack of space for the desired
resize-operation”. The resulting AutoSizeRequest could then be: “extend the container”. As
you might have guessed, this could result in a series of recursive operations.

Direct Resize

When a Figure is selected, it is wrapped by so-called “resize-handles” as depicted in the example
of a Label in Figure A.3. If you drag such a handle, you can resize this Figure, but restricted
by the constraints in Table A.1.

Table A.1: Constraints

Constraining part Constraint

1 Containers must wrap their children

2 Widgets must be within their parents

3 Widgets must not overlap with siblings

Direct Move

A Figure can either be moved by the cursor-keys, or by dragging the whole part (not the resize-
handles) using the mouse. For this operation the constraints from Table A.1 also apply.

Some Widgets have a Container with a size equal to the Widget’s size. You may notice a
strange behavior because of this “invisible” Container. To resize this Container before resizing
the widget, you can select it either from the context-menu, or even more conveniently from the
toolbar-menu, which is described next.

Toolbar

The GSME Tool-bar, depicted in Figure A.4, provides several advanced features. These are
described in Table A.2.

47

Getting Started

Figure A.4: GSME Toolbar

Table A.2: Toolbar Menu

Menu Submenu Selection Description

Resize

Max

one
Extending the size of the selected Widget to
the maximum possible in the selected direction.
“Max” stretches the size in all directions.

Top
Right
Bottom
Left

Align

Top

one
Moving the selected Widget to the maximum
possible position in the selected direction.

Right
Bottom
Left

Align to Widget

Top

several
The last selected Widget is the Reference

Widget. All others are aligned to match with
the selected edge of this reference.

Right
Bottom
Left

Resize with Widget
All

at least two
The last selected Widget is the Reference

Widget. All others are resized according to
match its size in the selected plane.

Horizontal
Vertical

Swap Widgets - exactly 2

The two Widgets change their places if possi-
ble. This is just possible if they have a common
ancestor and if there is enough space. The best
result is achieved, if the Widgets have the same
size.

Select Container - one
This is very useful to select an “invisible
Container” whose size is equal to that of its
single child-Widget.

Apply CSS - several

This applies the loaded CSS-files to the selected
Widget and all its children, e.g., selecting the
Screen will apply the styles to all Widgets

within this Screen.

Pop-up Bar

GMF provides a pop-up bar, usually to create new parts. In our case, creating new Widgets would
not be very useful, so we used the pop-up bar for another advanced feature. Figure A.5 shows
the two types of the GSME Pop-up bar. By pressing CTRL or SHIFT and moving the mouse-
pointer over a Widget (i.e., hovering), the corresponding GSME Pop-up bar appears. The type of
operation is displayed in the center of the selected part, surrounded by colored arrows to initiate
the operation.

The main advantage of modifying a layout in this way, is the recursive freeing of space to make
the desired operation possible. This is achieved by resizing the container and moving siblings.

There are also some drawbacks on this kind of customization:

48

Getting Started

(a) Resizing: SHIFT+hovering the Widget (b) Moving: CTRL+hovering the Widget

Figure A.5: The GSME Pop-up bar

• Move- and resize-delta is a fixed value of 10px.

• Containers don’t support a pop-up bar (Panels, ListPanels, etc.)

A.4 Style Customizations using the Properties View

Core

In the property sheet Core, you get information about the selected Widget. Some of the values
are allowed to be altered (e.g., width, height, format and text). Altering height and width of a
Widget is constrained as described Table A.1. A message-box appears if the altered value violates
the model.

Appearance

The property sheet Appearance is a standard property sheet, where you can change Fonts and
Colors of selected Figures. The Lines and Arrows section can be used to change the border
width of a Figure. For these operations, we recommend to use the property sheet CSS, which is
described next.

CSS

The property sheet CSS shows all styles that are allowed to be modified. They are persisted in
the CSS-file.

Attention: Not all CSS-styles match with all widget-types (see Table A.3)
Not all defined CSS-rule-values are available in GSME

49

Getting Started

Table A.3: Widget-Style combinations not supported

Widget Style

TextBox
border
background-color
dimension*

ComboBox

border
background-color
dimension*
font-size
font-style
font-weight
font-color

Button
border
background-color

* Increasing the dimension of the Widget only increases
the space around the Widget. The Widget’s size does not
change.

Figure A.6: Property-Page CSS

50

B The Structural UI Meta-Model

The Structural UI meta-model is the meta-model for the Structural Screen Model. It defines the
types of Widgets and their properties and relations. It also defines the types of LayoutManagers
and their corresponding LayoutData, which are available in the Structural Screen Model.

51

The Structural UI Meta-Model

F
ig

u
re

B
.1

:
S
t
r
u
c
t
u
r
a
l
U
I
M
e
t
a
M
o
d
e
l

p
a
g
e

1
/
2

52

The Structural UI Meta-Model

F
ig

u
re

B
.2

:
S
t
r
u
c
t
u
r
a
l
U
I
M
e
t
a
M
o
d
e
l

p
a
g
e

2
/
2

53

C Sequence Diagram of the Command
Execution “Stretching the Button”

Figure C.1 presents the full sequence diagram showing the creation of the AutoSize-Requests,
their corresponding commands and their detailed execution. In particular, we present the details
of the command execution Stretching the Button from the example in Paragraph Resizing by use
of the GSME Pop-up bar on page 28.

54

Sequence Diagram of the Command Execution “Stretching the Button”

F
ig

u
re

C
.1

:
S

eq
u

en
ce

d
ia

g
ra

m
:

E
x
ec

u
ti

n
g

a
n
A
u
t
o
S
i
z
e
-
R
e
q
u
e
s
t

55

Literature

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouil-
lon, and Jean Vanderdonckt. A unifying reference framework for multi-target user
interfaces. Interacting with Computers, 15(3):289–308, 2003.

[Com] Eclipse Community. GMF Tutorial Part1. Eclipse Foundation. last visit 2014/06.
[FKP+09] Jürgen Falb, Sevan Kavaldjian, Roman Popp, David Raneburger, Edin Arnautovic,

and Hermann Kaindl. Fully automatic user interface generation from discourse mod-
els. In Proceedings of the 13th International Conference on Intelligent User Interfaces
(IUI ’09), pages 475–476. ACM Press: New York, NY, 2009.

[Fou] Eclipse Foundation. GEF Developer Guide. Eclipse Foundation. last visit 2014/06.
[FPR+07] Jürgen Falb, Roman Popp, Thomas Röck, Helmut Jelinek, Edin Arnautovic, and

Hermann Kaindl. UI prototyping for multiple devices through specifying interaction
design. In Proceedings of the 11th IFIP TC 13 International Conference on Human-
Computer Interaction (INTERACT 2007), pages 136–149, Rio de Janeiro, Brazil,
September 2007. Springer.

[Gro09] Richard C. Gronback. Eclipse Modeling Project A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, 2009.

[KFK09] Sevan Kavaldjian, Jürgen Falb, and Hermann Kaindl. Generating content presentation
according to purpose. In Proceedings of the 2009 IEEE International Conference on
Systems, Man and Cybernetics (SMC 2009), San Antonio, TX, USA, Oct. 2009.

[KRF+09] Sevan Kavaldjian, David Raneburger, Jürgen Falb, Hermann Kaindl, and Dominik
Ertl. Semi-automatic user interface generation considering pointing granularity. In
Proceedings of the 2009 IEEE International Conference on Systems, Man and Cyber-
netics (SMC 2009), San Antonio, TX, USA, Oct. 2009.

[MPV11] Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. Past, present, and future of
model-based user interface development. i-com, 10(3):2–10, November 2011.

[MT88] W. C. Mann and S.A. Thompson. Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281, 1988.

[PKR13] Roman Popp, Hermann Kaindl, and David Raneburger. Connecting interaction mod-
els and application logic for model-driven generation of Web-based graphical user
interfaces. In Proceedings of the 20th Asia-Pacific Software Engineering Conference
(APSEC 2013), 2013.

[Pop12] Roman Popp. A unified solution for service-oriented architecture and user interface
generation through discourse-based communication models. Doctoral dissertation,
Vienna University of Technology, Vienna, Austria, 2012.

[PRK13] Roman Popp, David Raneburger, and Hermann Kaindl. Tool support for automated

56

LITERATURE LITERATURE

multi-device GUI generation from discourse-based communication models. In Pro-
ceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS ’13), New York, NY, USA, 2013. ACM.

[Ran08] David Raneburger. Automated graphical user interface generation based on an ab-
stract user interface specification. Master’s thesis, Vienna University of Technology,
Vienna, Austria, 2008.

[Ran14] David Raneburger. Interactive model-driven generation of graphical user interfaces
for multiple devices. Doctoral dissertation, Vienna University of Technology, 2014.

[RKP+14] David Raneburger, Hermann Kaindl, Roman Popp, Vedran Šajatović, and Alexander
Armbruster. A process for facilitating interaction design through automated GUI
generation. In Proceedings of the 29th Annual ACM Symposium on Applied Computing
(SAC’14), 2014.

[RPK+11] David Raneburger, Roman Popp, Hermann Kaindl, Jürgen Falb, and Dominik Ertl.
Automated Generation of Device-Specific WIMP UIs: Weaving of Structural and Be-
havioral Models. In Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’11, pages 41–46, New York, NY, USA, 2011.
ACM.

[RPK13] David Raneburger, Roman Popp, and Hermann Kaindl. Model-driven transformation
for optimizing PSMs: A case study of rule design for multi-device GUI generation.
In Proceedings of the 8th International Joint Conference on Software Technologies
(ICSOFT’13). SciTePress, July 2013.

[RPK+14] David Raneburger, Roman Popp, Hermann Kaindl, Alexander Armbruster, and Ve-
dran Šajatović. An iterative and incremental process for interaction design through
automated GUI generation. In Proceedings of the 16th International Conference on
Human-Computer Interaction, 2014.

[RPV12] David Raneburger, Roman Popp, and Jean Vanderdonckt. An automated layout
approach for model-driven WIMP-UI generation. In Proceedings of the 4th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’12, pages
91–100, New York, NY, USA, 2012. ACM.

[RWP+13] David Raneburger, Barbara Weixelbaumer, Roman Popp, Jürgen Falb, Nicole Mirnig,
Astrid Weiss, Manfred Tscheligi, and Brigitte Ratzer. A case study in automated
GUI generation for multiple devices. In Proceedings of the 11th IEEE AFRICON
Conference, pages 1212–1217, 2013.

[Sch10] Alexander Schörkhuber. Integritätsprüfung von Diskursmodellen, Transformation-
sregeln und strukturellen Modellen von graphischen User Interfaces. Master’s thesis,
Technische Universität Wien, Fakultät für Elektrotechnik und Informationstechnik,
Institut für Computertechnik, E384, 2010.

[Van04] Bill Moore; David Dean; Anna Gerber; Gunnar Wagenknecht; Philippe Vanderhey-
den. Eclipse Development using the Graphical Editing Framework and the Eclipse
Modeling Framework. IBM Redbooks, first edition, February 2004. This edition ap-
plies to Version: 2.1.1 of the Eclipse Platform, Version 1.1.0 of the Eclipse Modeling
Framework (EMF), and Version 2.1.1 of the Graphical Editing Framework (GEF) on
Microsoft Windows.

[Š14] Vedran Šajatović. Improved tool support for model-driven development of interactive
applications in UCP. Master’s thesis, Vienna University of Technology, 2014.

57

	Titlepage
	Introduction and Motivation
	Motivation
	Approach
	Outline

	Background
	The Unified Communication Platform User Interface Generation
	The GUI Generation Process
	Discourse-based Communication Model
	The Screen Model
	UCP-Tool Support

	Eclipse Graphical Modeling Framework
	GMF/GEF Architecture
	Eclipse Workbench

	Graphical Screen Model Editor
	Requirements for the GSME
	GSME Workbench GUI
	Layout Customizations
	Style Customizations

	Software Design
	Layout Features
	Style Features

	Requirements Satisfaction

	Results
	Discussion & Future Work
	Conclusion
	Getting Started
	Preface
	Create a Screen Model Diagram
	Layout Customizations
	Style Customizations using the Properties View

	The Structural UI Meta-Model
	Sequence Diagram of the Command Execution ``Stretching the Button''
	Literature

